
Don
Note
This is a sample note.

What readers are saying about
Pragmatic Unit Testing. . .

“This book starts out with a nice introduction discussing
what unit testing is as well as why we should do it. I like the
anecdotes peppered throughout the book illustrating the
point of why one should bother. . . . I also really liked the
analogies you use. It puts the code into a real-world context.”

Sharee L. Johnson,
Project Lead, Applications Development

“I wish I had a copy back when I started doing test-first
development as part of Extreme Programming.”

Al Koscielny, Software Developer

“I’m not totally new to testing, but I’ve struggled with many
aspects of it. I think this book does a good job of bringing
those along who are completely new to unit testing, but still
has enough advanced material to assist those of us who have
dabbled in testing and floundered once we’ve hit obstacles.”

Andrew Thompson,
Consultant, Greenbrier & Russel

“When I’m on a project that needs to be doing unit testing
better (which is often the case), I’d like to have this book
available as a simple reference to suggest to the team.”

Bobby Woolf, Consulting I/T Specialist,
IBM Software Services for Websphere

“I am a firm believer in unit testing and I would want all
team members I work with to be religiously practicing the
techniques recommended in this book. I think there is a lot
of good, practical information in this book that any
professional software engineer should be incorporating into
their daily work.”

James J. O’Connor III,
Lead System Design Engineer

Pragmatic Unit Testing
in Java with JUnit

Andy Hunt

Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and The Pragmatic Programmers, LLC was aware of a trademark
claim, the designations have been printed in initial capital letters or in all
capitals.

Every precaution was taken in the preparation of this book. However, the
publisher assumes no responsibility for errors or omissions, or for damages
that may result from the use of information (including program listings) con-
tained herein.

For information on the latest Pragmatic titles, visit us online:

http://www.pragmaticprogrammer.com

Copyright c© 2003 The Pragmatic Programmers, LLC. All rights reserved. No
part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-1-2

Text printed on acid-free paper.

First printing, September 2003

Contents

About the Starter Kit viii

Preface x

1 Introduction 1
1.1 Coding With Confidence 2
1.2 What is Unit Testing? 3
1.3 Why Should I Bother with Unit Testing? 4
1.4 What Do I Want to Accomplish? 5
1.5 How Do I Do Unit Testing? 7
1.6 Excuses For Not Testing 7
1.7 Roadmap . 12

2 Your First Unit Tests 13
2.1 Planning Tests 14
2.2 Testing a Simple Method 15
2.3 More Tests . 20

3 Writing Tests in JUnit 21
3.1 Structuring Unit Tests 21
3.2 JUnit Asserts . 22
3.3 JUnit Framework 26
3.4 JUnit Test Composition 27
3.5 JUnit Custom Asserts 32
3.6 JUnit and Exceptions 33
3.7 More on Naming 35
3.8 JUnit Test Skeleton 35

CONTENTS vi

4 What to Test: The Right-BICEP 37
4.1 Are the Results Right? 38
4.2 Boundary Conditions 41
4.3 Check Inverse Relationships 42
4.4 Cross-check Using Other Means 42
4.5 Force Error Conditions 43
4.6 Performance Characteristics 44

5 CORRECT Boundary Conditions 46
5.1 Conformance . 47
5.2 Ordering . 48
5.3 Range . 50
5.4 Reference . 53
5.5 Existence . 54
5.6 Cardinality . 55
5.7 Time . 57
5.8 Try It Yourself . 59

6 Using Mock Objects 63
6.1 Simple Stubs . 64
6.2 Mock Objects . 65
6.3 Testing a Servlet 69
6.4 Easy Mock Objects 72

7 Properties of Good Tests 77
7.1 Automatic . 78
7.2 Thorough . 79
7.3 Repeatable . 81
7.4 Independent . 81
7.5 Professional . 82
7.6 Testing the Tests 84

8 Testing on a Project 87
8.1 Where to Put Test Code 87
8.2 Test Courtesy . 91
8.3 Test Frequency 92
8.4 Tests and Legacy Code 93
8.5 Tests and Reviews 96

Prepared exclusively for Francilene Procopio Garcia

CONTENTS vii

9 Design Issues 99
9.1 Designing for Testability 99
9.2 Refactoring for Testing 101
9.3 Testing the Class Invariant 112
9.4 Test-Driven Design 115
9.5 Testing Invalid Parameters 117

A Gotchas 119
A.1 As Long As The Code Works 119
A.2 “Smoke” Tests 119
A.3 “Works On My Machine” 120
A.4 Floating-Point Problems 120
A.5 Tests Take Too Long 121
A.6 Tests Keep Breaking 121
A.7 Tests Fail on Some Machines 122
A.8 My main is Not Being Run 123

B Installing JUnit 124
B.1 Command-line installation 125
B.2 Does it work? . 126

C JUnit Test Skeleton 127
C.1 Helper Class . 129
C.2 Basic Template 129

D Resources 132
D.1 On The Web . 132
D.2 Bibliography . 134

E Summary: Pragmatic Unit Testing 135

F Answers to Exercises 136

Prepared exclusively for Francilene Procopio Garcia

About the Starter Kit
Our first book, The Pragmatic Programmer: From Journeyman
to Master, is a widely-acclaimed overview of practical topics in
modern software development. Since it was first published in
1999, many people have asked us about follow-on books, or
sequels. We’ll get around to that. But first, we thought we’d
go back and offer a prequel of sorts.

Over the years, we’re found that many of our pragmatic read-
ers who are just starting out need a helping hand to get their
development infrastructure in place, so they can begin form-
ing good habits early. Many of our more advanced pragmatic
readers understand these topics thoroughly, but need help
convincing and educating the rest of their team or organiza-
tion. We think we’ve got something that can help.

The Pragmatic Starter Kit is a three-volume set that covers
the essential basics for modern software development. These
volumes include the practices, tools, and philosophies that
you need to get a team up and running and super-productive.
Armed with this knowledge, you and your team can adopt
good habits easily and enjoy the safety and comfort of a well-
established “safety net” for your project.

Volume I, Pragmatic Version Control, describes how to use ver-
sion control as the cornerstone of a project. A project with-
out version control is like a word processor without an UNDO
button: the more text you enter, the more expensive a mis-
take will be. Pragmatic Version Control shows you how to use
version control systems effectively, with all the benefits and
safety but without crippling bureaucracy or lengthy, tedious
procedures.

ABOUT THE STARTER KIT ix

This volume, Pragmatic Unit Testing, is the second volume in
the series. Unit testing is an essential technique as it pro-
vides real-world, real-time feedback for developers as we write
code. Many developers misunderstand unit testing, and don’t
realize that it makes our jobs as developers easier.

Volume III Pragmatic Automation,1 covers the essential prac-
tices and technologies needed to automate your code’s build,
test, and release procedures. Few projects suffer from having
too much time on their hands, so Pragmatic Automation will
show you how to get the computer to do more of the mun-
dane tasks by itself, freeing you to concentrate on the more
interesting—and difficult—challenges.

These books are created in the same approachable style as
our first book, and address specific needs and problems that
you face in the trenches every day. But these aren’t dummy-
level books that only give you part of the picture; they’ll give
you enough understanding that you’ll be able to invent your
own solutions to the novel problems you face that we haven’t
addressed specifically.

For up-to-date information on these and other books, as well
as related pragmatic resources for developers and managers,
please visit us on the web at:

http://www.pragmaticprogrammer.com

Thanks, and remember to make it fun!

1Expected to be published in 2004.

Prepared exclusively for Francilene Procopio Garcia

Preface
Welcome to the world of developer-centric unit testing! We
hope you find this book to be a valuable resource for yourself
and your project team. You can tell us how it helped you—
or let us know how we can improve—by visiting the Pragmatic
Unit Testing page on our web site2 and clicking on “Feedback.”

Feedback like that is what makes books great. It’s also what
makes people and projects great. Pragmatic programming is
all about using real-world feedback to fine tune and adjust
your approach.

Which brings us to unit testing. As we’ll see, unit testing is
important to you as a programmer because it provides the
feedback you need. Without unit testing, you may as well be
writing programs on a yellow legal pad and hoping for the best
when they’re run.

That’s not very pragmatic.

This book can help. It is aimed primarily at the Java program-
mer who has some experience writing and designing code, but
who does not have much experience with unit testing.

But while the examples are in Java, using the JUnit frame-
work, the concepts remain the same whether you are writ-
ing in C++, Fortran, Ruby, Smalltalk, or VisualBasic. Test-
ing frameworks similar to JUnit exist for over 60 different
languages; these various frameworks can be downloaded for
free.3

2http://www.pragmaticprogrammer.com/sk/ut/
3http://www.xprogramming.com/software.htm

PREFACE xi

For the more advanced programmer, who has done unit test-
ing before, we hope there will be a couple of nice surprises for
you here. Skim over the basics of using JUnit and concentrate
on how to think about tests, how testing affects design, and
how to handle certain team-wide issues you may be having.

And remember that this book is just the beginning. It may be
your first book on unit testing, but we hope it won’t be your
last.

Where To Find The Code

Throughout the book you’ll find examples of Java code; some
of these are complete programs while others are fragments of
programs. If you want to run any of the example code or look
at the complete source (instead of just the printed fragment),
look in the margin: the filename of each code fragment in the
book is printed in the margin next to the code fragment itself.

Some code fragments evolve with the discussion, so you may
find the same source code file (with the same name) in the
main directory as well as in subdirectories that contain later
versions (rev1, rev2, and so on).

All of the code in this book is available via the Pragmatic Unit
Testing page on our web site.

Typographic Conventions

italic font Indicates terms that are being defined, or
borrowed from another language.

computer font Indicates method names, file and class
names, and various other literal strings.

xxx xx xx; Indicates unimportant portions of source
code that are deliberately omitted.

The “curves ahead” sign warns that this
material is more advanced, and can safely
be skipped on your first reading.

Prepared exclusively for Francilene Procopio Garcia

PREFACE xii

“Joe the Developer,” our cartoon friend,
asks a related question that you may find
useful.

STOP

A break in the text where you should stop
and think about what’s been asked, or try
an experiment live on a computer before
continuing.

Acknowledgments

We’d especially like to thank the following Practitioners for
their valuable input, suggestions, and stories: Mitch Amiano,
Nascif Abousalh-Neto, Andrew C. Oliver, Jared Richardson,
and Bobby Woolf.

Thanks also to our reviewers who took the time and energy
to point out our errors, omissions, and occasionally-twisted
writing: Will Gwaltney, Sharee L. Johnson, Eric Kalendra, Al
Koscielny, James J. O’Connor III, Mike Stok, Drew Thompson,
and Eric Vought.

Thanks to all of you for your hard work and support.

Andy Hunt and Dave Thomas
September, 2003
pragprog@pragmaticprogrammer.com

Prepared exclusively for Francilene Procopio Garcia

Chapter 1

Introduction
There are lots of different kinds of testing that can and should
be performed on a software project. Some of this testing re-
quires extensive involvement from the end users; other forms
may require teams of dedicated Quality Assurance personnel
or other expensive resources.

But that’s not what we’re going to talk about here.

Instead, we’re talking about unit testing: an essential, if often
misunderstood, part of project and personal success. Unit
testing is a relatively inexpensive, easy way to produce better
code, faster.

Many organizations have grand intentions when it comes to
testing, but tend to test only toward the end of a project, when
the mounting schedule pressures cause testing to be curtailed
or eliminated entirely.

Many programmers feel that testing is just a nuisance: an
unwanted bother that merely distracts from the real business
at hand—cutting code.

Everyone agrees that more testing is needed, in the same way
that everyone agrees you should eat your broccoli, stop smok-
ing, get plenty of rest, and exercise regularly. That doesn’t
mean that any of us actually do these things, however.

But unit testing can be much more than these—while you
might consider it to be in the broccoli family, we’re here to tell

CODING WITH CONFIDENCE 2

you that it’s more like an awesome sauce that makes every-
thing taste better. Unit testing isn’t designed to achieve some
corporate quality initiative; it’s not a tool for the end-users,
or managers, or team leads. Unit testing is done by program-
mers, for programmers. It’s here for our benefit alone, to make
our lives easier.

Put simply, unit testing alone can mean the difference be-
tween your success and your failure. Consider the following
short story.

1.1 Coding With Confidence

Once upon a time—maybe it was last Tuesday—there were
two developers, Pat and Dale. They were both up against
the same deadline, which was rapidly approaching. Pat was
pumping out code pretty fast; developing class after class and
method after method, stopping every so often to make sure
that the code would compile.

Pat kept up this pace right until the night before the deadline,
when it would be time to demonstrate all this code. Pat ran
the top-level program, but didn’t get any output at all. Noth-
ing. Time to step through using the debugger. Hmm. That
can’t be right, thought Pat. There’s no way that this variable
could be zero by now. So Pat stepped back through the code,
trying to track down the history of this elusive problem.

It was getting late now. That bug was found and fixed, but Pat
found several more during the process. And still, there was
no output at all. Pat couldn’t understand why. It just didn’t
make any sense.

Dale, meanwhile, wasn’t churning out code nearly as fast.
Dale would write a new routine and a short test to go along
with it. Nothing fancy, just a simple test to see if the routine
just written actually did what it was supposed to do. It took a
little longer to think of the test, and write it, but Dale refused
to move on until the new routine could prove itself. Only then
would Dale move up and write the next routine that called it,
and so on.

Prepared exclusively for Francilene Procopio Garcia

WHAT IS UNIT TESTING? 3

Dale rarely used the debugger, if ever, and was somewhat puz-
zled at the picture of Pat, head in hands, muttering various
evil-sounding curses at the computer with wide, bloodshot
eyes staring at all those debugger windows.

The deadline came and went, and Pat didn’t make it. Dale’s
code was integrated and ran almost perfectly. One little glitch
came up, but it was pretty easy to see where the problem was.
Dale fixed it in just a few minutes.

Now comes the punch line: Dale and Pat are the same age,
and have roughly the same coding skills and mental prowess.
The only difference is that Dale believes very strongly in unit
testing, and tests every newly-crafted method before relying
on it or using it from other code.

Pat does not. Pat “knows” that the code should work as writ-
ten, and doesn’t bother to try it until most of the code has
been written. But by then it’s too late, and it becomes very
hard to try to locate the source of bugs, or even determine
what’s working and what’s not.

1.2 What is Unit Testing?

A unit test is a piece of code written by a developer that ex-
ercises a very small, specific area of functionality of the code
being tested. Usually a unit test exercises some particular
method in a particular context. For example, you might add
a large value to a sorted list, then confirm that this value ap-
pears at the end of the list. Or you might delete a pattern of
characters from a string and then confirm that they are gone.

Unit tests are performed to prove that a piece of code does
what the developer thinks it should do.

The question remains open as to whether that’s the right thing
to do according to the customer or end-user: that’s what ac-
ceptance testing is for. We’re not really concerned with formal
validation and verification or correctness just yet. We’re re-
ally not even interested in performance testing at this point.
All we want to do is prove that code does what we intended,
and so we want to test very small, very isolated pieces of func-
tionality. By building up confidence that the individual pieces

Prepared exclusively for Francilene Procopio Garcia

WHY SHOULD I BOTHER WITH UNIT TESTING? 4

work as expected, we can then proceed to assemble and test
working systems.

After all, if we aren’t sure the code is doing what we think,
then any other forms of testing may just be a waste of time.
You still need other forms of testing, and perhaps much more
formal testing depending on your environment. But testing,
as with charity, begins at home.

1.3 Why Should I Bother with Unit Testing?

Unit testing will make your life easier. It will make your de-
signs better and drastically reduce the amount of time you
spend debugging.

In our tale above, Pat got into trouble by assuming that lower-
level code worked, and then went on to use that in higher-level
code, which was in turn used by more code, and so on. With-
out legitimate confidence in any of the code, Pat was building
a “house of cards” of assumptions—one little nudge at the
bottom and the whole thing falls down.

When basic, low-level code isn’t reliable, the requisite fixes
don’t stay at the low level. You fix the low level problem, but
that impacts code at higher levels, which then need fixing,
and so on. Fixes begin to ripple throughout the code, getting
larger and more complicated as they go. The house of cards
falls down, taking the project with it.

Pat keeps saying things like “that’s impossible” or “I don’t un-
derstand how that could happen.” If you find yourself think-
ing these sorts of thoughts, then that’s usually a good indica-
tion that you don’t have enough confidence in your code—you
don’t know for sure what’s working and what’s not.

In order to gain the kind of code confidence that Dale has,
you’ll need to ask the code itself what it is doing, and check
that the result is what you expect it to be.

That simple idea describes the heart of unit testing: the single
most effective technique to better coding.

Prepared exclusively for Francilene Procopio Garcia

WHAT DO I WANT TO ACCOMPLISH? 5

1.4 What Do I Want to Accomplish?

It’s easy to get carried away with unit testing because it’s so
much fun, but at the end of the day we still need to produce
production code for customers and end-users, so let’s be clear
about our goals for unit testing. First and foremost, you want
to do this to make your life—and the lives of your teammates—
easier.

Does It Do What I Want?

Fundamentally, you want to answer the question: “Is the code
fulfilling my intent?” The code might well be doing the wrong
thing as far as the requirements are concerned, but that’s a
separate exercise. You want the code to prove to you that it’s
doing exactly what you think it should.

Does It Do What I Want All of the Time?

Many developers who claim they do testing only ever write one
test. That’s the test that goes right down the middle, taking
the “one right path” through the code where everything goes
perfectly.

But of course, life is rarely that cooperative, and things don’t
always go perfectly: exceptions get thrown, disks get full,
network lines drop, buffers overflow, and—heaven forbid—we
write bugs. That’s the “engineering” part of software develop-
ment. Civil engineers must consider the load on bridges, the
effects of high winds, of earthquakes, floods, and so on. Elec-
trical engineers plan on frequency drift, voltage spikes, noise,
even problems with parts availability.

You don’t test a bridge by driving a single car over it right
down the middle lane on a clear, calm day. That’s not suffi-
cient. Similarly, beyond ensuring that the code does what you
want, you need to ensure that the code does what you want
all of the time, even when the winds are high, the parameters
are suspect, the disk is full, and the network is sluggish.

Prepared exclusively for Francilene Procopio Garcia

WHAT DO I WANT TO ACCOMPLISH? 6

Can I Depend On It?

Code that you can’t depend on is useless. Worse, code that
you think you can depend on (but turns out to have bugs) can
cost you a lot of time to track down and debug. There are
very few projects that can afford to waste time, so you want to
avoid that “one step forward two steps back” approach at all
costs, and stick to moving forward.

No one writes perfect code, and that’s okay—as long you know
where the problems exist. Many of the most spectacular soft-
ware failures that strand broken spacecraft on distant planets
or blow them up in mid-flight could have been avoided sim-
ply by knowing the limitations of the software. For instance,
the Arianne 5 rocket software re-used a library from an older
rocket that simply couldn’t handle the larger numbers of the
higher-flying new rocket.1 It exploded 40 minutes into flight,
taking $500 million dollars with it into oblivion.

We want to be able to depend on the code we write, and know
for certain both its strengths and its limitations.

For example, suppose you’ve written a routine to reverse a
list of numbers. As part of testing, you give it an empty list—
and the code blows up. The requirements don’t say you have
to accept an empty list, so maybe you simply document that
fact in the comment block for the method and throw an ex-
ception if the routine is called with an empty list. Now you
know the limitations of code right away, instead of finding out
the hard way (often somewhere inconvenient, such as in the
upper atmosphere).

Does it Document my Intent?

One nice side-effect of unit testing is that it helps you commu-
nicate the code’s intended use. In effect, a unit test behaves as
executable documentation, showing how you expect the code
to behave under the various conditions you’ve considered.

1For aviation geeks: The numeric overflow was due to a much larger “hor-
izontal bias” due to a different trajectory that increased the horizontal velocity
of the rocket.

Prepared exclusively for Francilene Procopio Garcia

HOW DO I DO UNIT TESTING? 7

Team members can look at the tests for examples of how to
use your code. If someone comes across a test case that you
haven’t considered, they’ll be alerted quickly to that fact.

And of course, executable documentation has the benefit of
being correct. Unlike written documentation, it won’t drift
away from the code (unless, of course, you stop running the
tests).

1.5 How Do I Do Unit Testing?

Unit testing is basically an easy practice to adopt, but there
are some guidelines and common steps that you can follow to
make it easier and more effective.

The first step is to decide how to test the method in question—
before writing the code itself. With at least a rough idea of how
to proceed, you proceed to write the test code itself, either
before or concurrently with the implementation code.

Next, you run the test itself, and probably all the other tests
in that part of the system, or even the entire system’s tests
if that can be done relatively quickly. It’s important that all
the tests pass, not just the new one. You want to avoid any
collateral damage as well as any immediate bugs.

Every test needs to determine whether it passed or not—it
doesn’t count if you or some other hapless human has to read
through a pile of output and decide whether the code worked
or not. You want to get into the habit of looking at the test
results and telling at a glance whether it all worked. We’ll talk
more about that when we go over the specifics of using unit
testing frameworks.

1.6 Excuses For Not Testing

Despite our rational and impassioned pleas, some developers
will still nod their heads and agree with the need for unit test-
ing, but will steadfastly assure us that they couldn’t possibly
do this sort of testing for one of a variety of reasons. Here are
some of the most popular excuses we’ve heard, along with our
rebuttals.

Prepared exclusively for Francilene Procopio Garcia

EXCUSES FOR NOT TESTING 8

Joe Asks. . .
What’s collateral damage?

Collateral damage is what happens when a new fea-
ture or a bug fix in one part of the system causes a
bug (damage) to another, possibly unrelated part of
the system. It’s an insidious problem that, if allowed to
continue, can quickly render the entire system broken
beyond anyone’s ability to fix.

We sometime call this the “Whac-a-Mole” effect. In
the carnival game of Whac-a-Mole, the player must
strike the mechanical mole heads that pop up on the
playing field. But they don’t keep their heads up for
long; as soon as you move to strike one mole, it re-
treats and another mole pops up on the opposite side
of the field. The moles pop up and down fast enough
that it can be very frustrating to try to connect with
one and score. As a result, players generally flail help-
lessly at the field as the moles continue to pop up
where you least expect them.

Widespread collateral damage to a code base can
have a similar effect.

It takes too much time to write the tests This is the num-
ber one complaint voiced by most newcomers to unit testing.
It’s untrue, of course, but to see why we need to take a closer
look at where you spend your time when developing code.

Many people view testing of any sort as something that hap-
pens toward the end of a project. And yes, if you wait to begin
unit testing until then it will definitely take too long. In fact,
you may not finish the job until the heat death of the universe
itself.

At least it will feel that way: it’s like trying to clear a couple of
acres of land with a lawn mower. If you start early on when
there’s just a field of grasses, the job is easy. If you wait
until later, when the field contains thick, gnarled trees and
dense, tangled undergrowth, then the job becomes impossibly
difficult.

Prepared exclusively for Francilene Procopio Garcia

EXCUSES FOR NOT TESTING 9

P
ro

d
u

ct
iv

it
y

→

P
ro

d
u

ct
iv

it
y

→

Time → Time →

PAY-AS-YOU-GO SINGLE TEST PHASE

Figure 1.1: Comparison of Paying-as-you-go vs. Having a Sin-
gle Testing Phase

Instead of waiting until the end, it’s far cheaper in the long
run to adopt the “pay-as-you-go” model. By writing individual
tests with the code itself as you go along, there’s no crunch
at the end, and you experience fewer overall bugs as you are
generally always working with tested code. By taking a little
extra time all the time, you minimize the risk of needing a
huge amount of time at the end.

You see, the trade-off is not “test now” versus “test later.” It’s
linear work now versus exponential work and complexity try-
ing to fix and rework at the end. All that extra work kills your
productivity, as shown in Figure 1.1.

Notice that testing isn’t free. In the pay-as-you-go model,
the effort is not zero; it will cost you some amount of effort
(and time and money). But look at the frightening direction
the right-hand curve takes over time—straight down. Your
productivity might even become negative. These productivity
losses can easily doom a project.

So if you think you don’t have time to write tests in addition to
the code you’re already writing, consider the following ques-
tions:

1. How much time do you spend debugging code that you
or others have written?

Prepared exclusively for Francilene Procopio Garcia

EXCUSES FOR NOT TESTING 10

2. How much time do you spend reworking code that you
thought was working, but turned out to have major, crip-
pling bugs?

3. How much time do you spend isolating a reported bug to
it’s source?

For most people who work without unit tests, these numbers
add up fast, and will continue to add up even faster over the
life of the project. Proper unit testing dramatically reduces
these times, which frees up enough time so that you’ll have
the opportunity to write all of the unit tests you want—and
maybe even some free time to spare.

It takes too long to run the tests It shouldn’t. Most unit
tests should execute extremely quickly, so you should be able
to run hundreds, even thousands of them in a matter of a
few seconds. But sometimes that won’t be possible, and you
may end up with certain tests that simply take too long to
conveniently run all of the time.

In that case, you’ll want to separate out the longer-running
tests from the short ones. Only run the long tests once a day,
or once every few days as appropriate, and run the shorter
tests constantly.

It’s not my job to test my code Now here’s an interesting
excuse. Pray tell, what is your job, exactly? Presumably your
job, at least in part, is to create working code. If you are
throwing code over the wall to some testing group without any
assurance that it’s working, then you’re not doing your job.
It’s not polite to expect others to clean up our own messes,
and in extreme cases submitting large volumes of buggy code
can become a “career limiting” move.

On the other hand, if the testers or QA group find it very
difficult to find fault with your code, your reputation will grow
rapidly—along with your job security!

I don’t really know how the code is supposed to behave so
I can’t test it If you truly don’t know how the code is sup-
posed to behave, then maybe this isn’t the time to be writing

Prepared exclusively for Francilene Procopio Garcia

EXCUSES FOR NOT TESTING 11

it. Maybe a prototype would be more appropriate as a first
step to help clarify the requirements.

If you don’t know what the code is supposed to do, then how
will you know that it does it?

But it compiles! Okay, no one really comes out with this as
an excuse, at least not out loud. But it’s easy to get lulled
into thinking that a successful compile is somehow a mark of
approval, that you’ve passed some threshold of goodness.

But the compiler’s blessing is a pretty shallow compliment.
Any compiler or interpreter can only verify that your syntax
is correct. It can’t figure out what your code will do. For
example, the Java compiler can easily determine that this line
is wrong:

public statuc void main(String args[]) {

It’s just a simple typo, and should be static, not statuc.
That’s the easy part. But now suppose you’ve written the
following:

public void addit(Object anObject){
List myList = new List;
myList.add(anObject);
myList.add(anObject);
// more code...

}

Did you really mean to add the same object to the same list
twice? Maybe, maybe not. The compiler can’t tell the differ-
ence, only you know what you’ve intended the code to do.2

I’m being paid to write code, not to write tests By that
same logic, you’re not being paid to spend all day in the de-
bugger, either. Presumably you are being paid to write work-
ing code, and unit tests are merely a tool toward that end, in
the same fashion as an editor, an IDE, or the compiler.

2Automated testing tools that generate their own tests based on your ex-
isting code fall into this same trap—they can only use what you wrote, not
what you meant.

Prepared exclusively for Francilene Procopio Garcia

ROADMAP 12

I feel guilty about putting testers and QA staff out of work
Not to worry, you won’t. Remember we’re only talking about
unit testing, here. It’s the barest-bones, lowest-level testing
that’s designed for us, the programmers. There’s plenty of
other work to be done in the way of functional testing, accep-
tance testing, performance and environmental testing, valida-
tion and verification, formal analysis, and so on.

My company won’t let me run unit tests on the live sys-
tem Whoa! We’re talking about developer unit-testing here.
While you might be able to run those same tests in other con-
texts (on the live, production system, for instance) they are no
longer unit tests. Run your unit tests on your machine, using
your own database, or using a mock object (see Chapter 6).

If the QA department or other testing staff want to run these
tests in a production or staging environment, you might be
able to coordinate the technical details with them so they can,
but realize that they are no longer unit tests in that context.

1.7 Roadmap

Chapter 2, Your First Unit Tests, contains an overview of test
writing. From there we’ll take a look at the specifics of Writing
Tests in JUnit in Chapter 3. We’ll then spend a few chapters
on how you come up with what things need testing, and how
to test them.

Next we’ll look at the important properties of good tests in
Chapter 7. We then talk about what you need to do to use
testing effectively in your project in Chapter 8. This chap-
ter also discusses how to handle existing projects with lots
of legacy code. Chapter 9, Design Issues. then looks at how
testing can influence you application’s design (for the better).

The appendices contain additional useful information: a look
at common unit testing problems, a note on installing JUnit,
a sample JUnit skeleton program, and a list of resources in-
cluding the bibliography. We finish off with a summary card
containing highlights of the book’s tips and suggestions.

So sit back, relax, and welcome to the world of better coding.

Prepared exclusively for Francilene Procopio Garcia

Chapter 2

Your First Unit Tests
As we said in the introduction, a unit test is just a piece of
code. It’s a piece of code you write that happens to exercise
another piece of code, and determines whether the other piece
of code is behaving as expected or not.

How do you do that, exactly?

To check if code is behaving as you expect, you use an asser-
tion, a simple method call that verifies that something is true.
For instance, the method assertTrue checks that the given
boolean condition is true, and fails the current test if it is not.
It might be implemented like the following.

public void assertTrue(boolean condition) {
if (!condition) {
abort();

}
}

You could use this assert to check all sorts of things, including
whether numbers are equal to each other:

int a = 2;
xx xxx xx x xxx x;
x x x xx xxx xxxx x;
assertTrue(a == 2);
xxxx xx xx xxx xx;

If for some reason a does not equal 2 when the assertTrue()
is called, then the program will abort.

Since we check for equality a lot, it might be easier to have an
assert just for numbers. To check that two integers are equal,

PLANNING TESTS 14

for instance, we could write a method that takes two integer
parameters:

public void assertEquals(int a, int b) {
assertTrue(a == b);

}

Armed with just these two asserts, we can start writing some
tests. We’ll look at more asserts and describe the details of
how you use asserts in unit test code in the next chapter. But
first, let’s consider what tests might be needed before we write
any code at all.

2.1 Planning Tests

We’ll start with a simple example, a single, static method de-
signed to find the largest number in a list of numbers:

int Largest.largest(int[] list);

In other words, given an array of numbers such as [7, 8,

9], this method should return 9. That’s a reasonable first
test. What other tests can you think of, off the top of your
head? Take a minute and write down as many tests as you
can think of for this simple method before you continue read-
ing.

STOPThink about this for a moment before reading on. . .

How many tests did you come up with?

It shouldn’t matter what order the given list is in, so right off
the bat you’ve got the following test ideas (which we’ve written
as “what you pass in” → “what you expect”).

• [7, 8, 9] → 9

• [8, 9, 7] → 9

• [9, 7, 8] → 9

What happens if there are duplicate largest numbers?

• [7, 9, 8, 9] → 9

Prepared exclusively for Francilene Procopio Garcia

TESTING A SIMPLE METHOD 15

Since these are int types, not objects, you probably don’t care
which 9 is returned, as long as one of them is.

What if there’s only one number?

• [1] → 1

And what happens with negative numbers:

• [-9, -8, -7] → -7

It might look odd, but indeed -7 is larger than -9. Glad we
straightened that out now, rather than in the debugger or in
production code where it might not be so obvious.

To make all this more concrete, lets actually write a “largest”
method and test it. Here’s the code for our first implementa-
tion:
Line 1 public class Largest {

-
- /**
- * Return the largest element in a list.
5 *
- * @param list A list of integers
- * @return The largest number in the given list
- */
- public static int largest(int[] list) {

10 int index, max=Integer.MAX_VALUE;
- for (index = 0; index < list.length-1; index++) {
- if (list[index] > max) {
- max = list[index];
- }

15 }
- return max;
- }
-
- } La

rg
e

st
.ja

va

Now that we’ve got some ideas for tests, we’ll look at writing
these tests in Java, using the JUnit framework.

2.2 Testing a Simple Method

Normally you want to make the first test you write incredi-
bly simple, because there is much to be tested the first time
besides the code itself: all of that messy business of class
names, library locations, and making sure it compiles. You
want to get all of that taken care of and out of the way with
the very first, simplest test; you won’t have to worry about it

Prepared exclusively for Francilene Procopio Garcia

TESTING A SIMPLE METHOD 16

anymore after that, and you won’t have to debug complex in-
tegration issues at the same time you’re debugging a complex
test!

First, let’s just test the simple case of passing in a small array
with a couple of unique numbers. Here’s the complete source
code for the test class. We’ll explain all about test classes
in the next chapter; for now, just concentrate on the assert
statements:

import junit.framework.*;

public class TestLargest extends TestCase {
public TestLargest(String name) {
super(name);

}
public void testSimple() {
assertEquals(9, Largest.largest(new int[] {7,8,9}));

}
} Te

st
La

rg
e

st
.ja

va

Java note: the odd-looking syntax to create an anonymous
array is just for your authors’ benefit, as we are lazy and do
not like to type. If you prefer, the test could be written this
way instead (although the previous syntax is idiomatic):

public void testSimple2() {
int[] arr = new int[3];
arr[0] = 7;
arr[1] = 8;
arr[2] = 9;
assertEquals(9, Largest.largest(arr));

} Te
st

La
rg

e
st

.ja
va

That’s all it takes, and you have your first test. Run it and
make sure it passes (see the sidebar on the next page).

STOPTry running this example before reading on. . .

Having just run that code, you probably saw an error similar
to the following:

There was 1 failure:
1) testSimple(TestLargest)junit.framework.AssertionFailedError:

expected:<9> but was:<2147483647>
at TestLargest.testSimple(TestLargest.java:11)

Whoops! That didn’t go as expected. Why did it return such
a huge number instead of our 9? Where could that very large

Prepared exclusively for Francilene Procopio Garcia

TESTING A SIMPLE METHOD 17

How To Run A JUnit Test

If JUnit is integrated into your IDE, then running a test
may be as easy as pressing a button and selecting
from a list of available test classes.

Otherwise, you can always execute a TestRunner
manually. There are several flavors of test runners.
To run a GUI version that lets you pick and choose
classes (and which remembers them from session to
session), run the following class:

java junit.swingui.TestRunner

You’ll probably be able to run the junit.swingui.
TestRunner class from your IDE. If not, run it from the
command line using the jre or java command (as
shown).

To run a test using the textual UI, as we’ve shown in
this book, use:

java junit.textui.TestRunner classname ...

For instance, to run the unit tests on the preced-
ing page we’d compile the Largest and the Test-
Largest programs, then run the TestRunner on Test-
Largest:

javac Largest.java TestLargest.java
java junit.textui.TestRunner TestLargest

number have come from? It almost looks like the largest num-
ber. . . oh, it’s a small typo: max=Integer.MAX VALUE on line
11 should have been max=0. We want to initialize max so that
any other number instantly becomes the next max. Let’s fix
the code, recompile, and run the test again to make sure that
it works.

Next we’ll look at what happens when the largest number ap-
pears in different places in the list—first or last, and some-
where in the middle. Bugs most often show up at the “edges.”
In this case, edges occur when when the largest number is at
the start or end of the array that we pass in. We can lump all
three of these asserts together in one test, but let’s add the
assert statements one at a time:

Prepared exclusively for Francilene Procopio Garcia

TESTING A SIMPLE METHOD 18

import junit.framework.*;

public class TestLargest extends TestCase {
public TestLargest(String name) {
super(name);

}
public void testSimple() {
assertEquals(9, Largest.largest(new int[] {7,8,9}));

}
public void testOrder() {
assertEquals(9, Largest.largest(new int[] {9,8,7}));

}
} Te

st
La

rg
e

st
.ja

va

Type in that test and run it. Hey, it works! Now try it with
the 9 in the middle (just add an additional assertion the the
existing testOrder() method):

public void testOrder() {
assertEquals(9, Largest.largest(new int[] {9,8,7}));
assertEquals(9, Largest.largest(new int[] {7,9,8}));

} Te
st

La
rg

e
st

.ja
va

We’re on a roll. One more, just for the sake of completeness,
and we can move on to more interesting tests:

public void testOrder() {
assertEquals(9, Largest.largest(new int[] {9,8,7}));
assertEquals(9, Largest.largest(new int[] {7,9,8}));
assertEquals(9, Largest.largest(new int[] {7,8,9}));

} Te
st

La
rg

e
st

.ja
va

STOPTry running this example before reading on. . .

There was 1 failure:
1) testOrder(TestLargest)junit.framework.AssertionFailedError:

expected:<9> but was:<8>
at TestLargest.testOrder(TestLargest.java:10)

Why did the test get an 8 as the largest number? It’s almost
as if the code ignored the last entry in the list. Sure enough,
another simple typo: the for loop is terminating too early.
This is an example of the infamous “off-by-one” error. Our
code has:

for (index = 0; index < list.length-1; index++) {

But it should be one of:
for (index = 0; index <= list.length-1; index++) {
for (index = 0; index < list.length; index++) {

Prepared exclusively for Francilene Procopio Garcia

TESTING A SIMPLE METHOD 19

The second expression is idiomatic in languages descended
from C (including Java), and it’s easier to read, so let’s go
with that one. Make the change and run the tests again.

Now you can check for duplicate largest values; type this in
and run it (we’ll only show the newly added methods from
here on out):

public void testDups() {
assertEquals(9, Largest.largest(new int[] {9,7,9,8}));

} Te
st

La
rg

e
st

.ja
va

So far, so good. Now the test for just a single integer:

public void testOne() {
assertEquals(1, Largest.largest(new int[] {1}));

} Te
st

La
rg

e
st

.ja
va

Hey, it worked! You’re on a roll now, surely all the bugs we
planted in this example have been exorcised by now. Just one
more check with negative values:

public void testNegative() {
int [] negList = new int[] {-9, -8, -7};
assertEquals(-7, Largest.largest(negList));

} Te
st

La
rg

e
st

.ja
va

STOPTry running this example before reading on. . .

There was 1 failure:
1) testNegative(TestLargest)junit.framework.AssertionFailedError:

expected:<-7> but was:<0>
at TestLargest.testNegative(TestLargest.java:16)

Whoops! Where did zero come from?

Looks like choosing 0 to initialize max was a bad idea; what
we really wanted was MIN VALUE, so as to be less than all
negative numbers as well:

max = Integer.MIN_VALUE

Make that change and try it again—all of the existing tests
should continue to pass, and now this one will as well.

Unfortunately, the initial specification for the method “largest”
is incomplete, as it doesn’t say what should happen if the
array is empty. Let’s say that it’s an error, and add some code
at the top of the method that will throw a runtime-exception
if the list length is zero:

Prepared exclusively for Francilene Procopio Garcia

MORE TESTS 20

public static int largest(int[] list) {
int index, max=Integer.MAX_VALUE;

if (list.length == 0) {
throw new RuntimeException("Empty list");

}
...

Notice that just by thinking of the tests, we’ve already realized
we need a design change. That’s not at all unusual, and in
fact is something we want to capitalize on. So for the last test,
we need to check that an exception is thrown when passing in
an empty array. We’ll talk about testing exceptions in depth
on page 33, but for now just trust us:

public void testEmpty() {
try {

Largest.largest(new int[] {});
fail("Should have thrown an exception");

} catch (RuntimeException e) {
assertTrue(true);

}
} Te

st
La

rg
e

st
.ja

va

Finally, a reminder: all code—test or production—should be
clear and simple. Test code especially must be easy to under-
stand, even at the expense of performance or verbosity.

2.3 More Tests

We started with a very simple method and came up with a
couple of interesting tests that actually found some bugs.
Note that we didn’t go overboard and blindly try every pos-
sible number combination; we picked the interesting cases
that might expose problems. But are these all the tests you
can think of for this method?

What other tests might be appropriate?

Since we’ll need to think up tests all of the time, maybe we
need a way to think about code that will help us to come up
with good tests regularly and reliably. We’ll talk about that
after the next chapter, but first, let’s take a more in-depth
look at using JUnit.

Prepared exclusively for Francilene Procopio Garcia

Chapter 3

Writing Tests in JUnit

We’ve looked at writing tests somewhat informally in the last
chapter, but now it’s time to take a deeper look at the differ-
ence between test code and production code, all the various
forms of JUnit’s assert, the structure and composition of
JUnit tests, and so on.

3.1 Structuring Unit Tests

When writing test code, there are some naming conventions
you need to follow. If you have a method named create-

Account that you want to test, then your first test method
might be named testCreateAccount. The method test-

CreateAccount will call createAccount with the necessary
parameters and verify that createAccount works as adver-
tised. You can, of course, have many test methods that exer-
cise createAccount.

The relationship between these two pieces of code is shown in
Figure 3.1 on the following page.

The test code is for our internal use only. Customers or end-
users will never see it or use it. The production code—that
is, the code that will eventually be shipped to a customer and
put into production—must therefore not know anything about
the test code. Production code will be thrust out into the cold
world all alone, without the test code.

JUNIT ASSERTS 22

testCreateAccount()

testCreateAcctDef()

testCreateAcctDup()

TestAccount.java

(Internal Only)

createAccount()

Account.java

(Delivered)

Figure 3.1: Test Code and Production Code

The test code must be written to do a few things:

• Setup all conditions needed for testing (create any re-
quired objects, allocate any needed resources, etc.)

• Call the method to be tested

• Verify that the method to be tested functioned as ex-
pected

• Clean up after itself

You write test code and compile it in the normal fashion, as
you would any other bit of source code in your project. It
might happen to use some additional libraries, but otherwise
there’s no magic—it’s just regular code.

When it’s time to execute the code, remember that you never
actually run the production code directly; at least, not the way
a user would. Instead, you run the test code, which in turn
exercises the production code under very carefully controlled
conditions.

We’ll be showing the conventions for JUnit, using Java, in our
examples, but the general concepts are the same for any test-
ing framework in any language or environment. If you don’t
have JUnit installed on your computer yet, see Appendix B on
page 124 and then come on back, and we’ll take a look at the
JUnit-specific method calls and classes.

3.2 JUnit Asserts

As we’ve seen, there are some helper methods that assist you
in determining whether a method under test is performing

Prepared exclusively for Francilene Procopio Garcia

JUNIT ASSERTS 23

correctly or not. Generically, we call all these methods as-
serts. They let you assert that some condition is true; that
two bits of data are equal, or not, and so on. We’ll take a look
at each one of the assert methods that JUnit provides next.

All of the following methods will record failures (that’s when
the assertion is false) or errors (that’s when you get an unex-
pected exception), and report these through the JUnit classes.
For the text version, that means an error message will be
printed to the console. The GUI version will show a red bar
and supporting details to indicate a failure.

When a failure or error occurs, execution of the current test
method is aborted. Other tests within the same test class will
still be run.

Asserts are the fundamental building block for unit tests; the
JUnit library provides a number of different forms of assert.

assertEquals

assertEquals([String message],
expected,
actual)

This is the most-often used form of assert. expected is a value
you hope to see (typically hard-coded), and actual is a value
actually produced by the code under test. message is an op-
tional message that will be reported in the event of a failure.
You can omit the message argument and simply provide the
expected and actual values.

Any kind of object may be tested for equality; the appropriate
equals method will be used for the comparison. In particular,
you can compare the contents of strings using this method.
Different method signatures are also provided for all the na-
tive types (boolean, int, short, etc.) and Object. Be aware
that the equals method for native arrays, however, does not
compare the contents of the arrays, just the array reference
itself, which is probably not what you want.

Computers cannot represent all floating-point numbers ex-
actly, and will usually be off a little bit. Because of this, if you
are using an assert to compare floating point numbers (floats
or doubles in Java), you need to specify one additional piece

Prepared exclusively for Francilene Procopio Garcia

JUNIT ASSERTS 24

of information, the tolerance. This specifies just how close to
“equals” you need the result to be. For most business applica-
tions, 4 or 5 decimal places is probably enough. For scientific
apps, you may need much greater precision.

assertEquals([String message],
expected,
actual,
tolerance)

For instance, the following assert will check that the actual
result is equal to 3.33, but only look at the first two decimal
places:

assertEquals("Should be 3 1/3", 3.33, 10.0/3.0, 0.01);

assertNull
assertNull([String message], java.lang.Object object)
assertNotNull([String message], java.lang.Object object)

Asserts that the given object is null (or not null), failing
otherwise. The message is optional.

assertSame
assertSame([String message], expected, actual)

Asserts that expected and actual refer to the same object, and
fails the test if they do not. The message is optional.

assertNotSame([String message], expected, actual)

Asserts that expected and actual do not refer to the same
object, and fails the test if they are the same object. The
message is optional.

assertTrue
assertTrue([String message], boolean condition)

Asserts that the given boolean condition is true, otherwise the
test fails. The message is optional.

If you find test code that is littered with the following:

assertTrue(true);

then you should rightfully be concerned. Unless that con-
struct is used to verify some sort of branching or exception

Prepared exclusively for Francilene Procopio Garcia

JUNIT ASSERTS 25

logic, it’s probably a bad idea. In particular, what you really
don’t want to see is a whole page of “test” code with a single
assertTrue(true) at the very end (i.e., “the code made it
to the very end without blowing up therefore it must work”).
That’s not testing, that’s wishful thinking.

In addition to testing for true, you can also test for false:

assertFalse([String message], boolean condition)

Asserts that the given boolean condition is false, otherwise the
test fails. The message is optional.

fail
fail([String message])

Fails the test immediately, with the optional message. Often
used to mark sections of code that should not be reached (for
instance, after an exception is expected).

Using asserts

You usually have multiple asserts in a given test method, as
you prove various aspects and relationships of the method(s)
under test. When an assert fails, that test method will be
aborted—the remaining assertions in that method will not be
executed this time. But that shouldn’t be of any concern; you
have to fix the failing test before you can proceed anyway. And
you fix the next failing test. And the next. And so on.

You should normally expect that all tests pass all of the time.
In practice, that means that when you introduce a bug, only
one or two tests fail. Isolating the problem is usually pretty
easy in that environment.

Under no circumstances should you continue to add features
when there are failing tests! Fix any test as soon as it fails,
and keep all tests passing all of the time.

To maintain that discipline, you’ll need an easy way to run all
the tests—or to run groups of tests, particular subsystems,
and so on.

Prepared exclusively for Francilene Procopio Garcia

JUNIT FRAMEWORK 26

3.3 JUnit Framework

So far, we’ve just looked at the assert methods themselves.
But you can’t just stick assert methods into a source file and
expect it to work; you need a little bit more of a framework
than that. Fortunately, it’s not too much more.

Here is a very simple piece of test code that illustrates the
minimum framework you need to get started.

Line 1 import junit.framework.*;
-
- public class TestSimple extends TestCase {
-
5 public TestSimple(String name) {
- super(name);
- }
-
- public void testAdd() {

10 assertEquals(2, 1+1);
- }
-
- } Te

st
Si

m
p

le
.ja

va

This code is pretty straightforward, but let’s take a look at
each part in turn.

First, the import statement on line 1 brings in the necessary
JUnit classes.

Next, we have the class definition itself on line 3: each class
that contains tests must extend TestCase as shown. The
base class TestCase provides most of the unit-testing func-
tionality that we’ll need, including all of the assert methods
we described above.

The base class requires a constructor that takes a String, so
we have to provide a call to super that passes in a name. We
don’t know what that name should be just at the moment, so
we’ll just make our own constructor take a String and pass
it along on line 5.

Finally, the test class contains individual methods named
test. . . . In the example, we’ve got one test method named
testAdd on line 9. All methods with names that begin with
test will be run automatically by JUnit. You can also specify
particular methods to run by defining a suite method; more
on that a bit later.

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST COMPOSITION 27

In the previous example, we showed a single test, using a
single assert, in a single test method. Of course, inside a test
method, you can place any number of asserts:

public void testAdds() {
assertEquals(2, 1+1);
assertEquals(4, 2+2);
assertEquals(-8, -12+4);

} Te
st

Si
m

p
le

.ja
va

Here we have three assertEquals inside a test method.

3.4 JUnit Test Composition

As we’ve seen so far, a test class contains test methods; each
method contains one or more assert statements. But a test
class can also invoke other test classes: individual classes,
packages, or even the whole system.

This magic is achieved by creating test suites. Any test class
can contain a static method named suite:

public static Test suite();

You can provide a suite() method to return any collection of
tests you want (without a suite() method, JUnit runs all of
the test. . . methods automatically). But you might want to
add particular tests by hand, including the results from other
suites.

For instance, suppose you had a normal set of tests as we’ve
already seen in a class named TestClassOne:

import junit.framework.*;

public class TestClassOne extends TestCase {
public TestClassOne(String method) {
super(method);

}
public void testAddition() {
assertEquals(4, 2+2);

}
public void testSubtraction() {
assertEquals(0, 2-2);

}
} Te

st
C

la
ss

O
ne

.ja
va

The default action, using Java reflection on this class, would
be to run the test methods testAddition() and testSub-

traction().

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST COMPOSITION 28

Now suppose you’ve got a second class, TestClassTwo. This
uses a brute-force algorithm to find the shortest route that
our traveling salesman, Bob, can take to visit the top n cities
in his territory. The funny thing about the Traveling Salesman
algorithm is that for a small number of cities it works just fine,
but it’s an exponential algorithm—a few hundred cities might
take 20,000 years to run, for example. Even 50 cities takes a
few hours, so you probably don’t want to to include that test
by default.

import junit.framework.*;

public class TestClassTwo extends TestCase {
public TestClassTwo(String method) {
super(method);

}
// This one takes a few hours...
public void testLongRunner() {
TSP tsp = new TSP(); // Load with default cities
assertEquals(2300, tsp.shortestPath(50)); // top 50

}
public void testShortTest() {
TSP tsp = new TSP(); // Load with default cities
assertEquals(140, tsp.shortestPath(5)); // top 5

}
public void testAnotherShortTest() {
TSP tsp = new TSP(); // Load with default cities
assertEquals(586, tsp.shortestPath(10)); // top 10

}
public static Test suite() {
TestSuite suite = new TestSuite();
// Only include short tests
suite.addTest(

new TestClassTwo("testShortTest"));
suite.addTest(

new TestClassTwo("testAnotherShortTest"));
return suite;

}
} Te

st
C

la
ss

Tw
o

.ja
va

The test is still there, but to run it you would have to ask for
it explicitly (we’ll show one way to do that with a special test
skeleton in Appendix C on page 127). Without this special
mechanism, only the short-running tests will be run when we
invoke the test suite.

Also, now we can see what that String parameter to the
constructor is for: it lets a TestCase return a reference to
a named test method. Here we’re using it to get references to
the two short-running tests to populate our test suite.

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST COMPOSITION 29

You might want to have a higher-level test that is composed
of both of these test classes:

import junit.framework.*;

public class TestClassComposite extends TestCase {
public TestClassComposite(String method) {
super(method);

}
static public Test suite() {
TestSuite suite = new TestSuite();
// Grab everything:
suite.addTestSuite(TestClassOne.class);
// Use the suite method:
suite.addTest(TestClassTwo.suite());
return suite;

}
} Te

st
C

la
ss

C
o

m
p

o
sit

e
.ja

va

Now if you run TestClassComposite, the following individ-
ual test methods will be run:

• testAddition() from TestClassOne

• testSubtraction() from TestClassOne

• testShortTest() from TestClassTwo

• testAnotherShortTest() from TestClassTwo

You can keep going with this scheme; another class might in-
clude TestClassComposite, which would include the above
methods, along with some other composite of tests, and so on.

Per-test Setup and Tear-down

Each test should run independently of every other test; this
allows you to run any individual test at any time, in any order.

To accomplish this feat, you may need to reset some parts of
the testing environment in between tests, or clean up after
a test has run. JUnit’s TestCase base class provides two
methods that you can override to set up and then tear down
the test’s environment:

protected void setUp();
protected void tearDown();

The method setUp() will be called before each one of the
test. . . methods is executed, and the method tearDown()

will be called after each test method is executed.

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST COMPOSITION 30

1. oneTimeSetUp()

2. setUp()

3. testMethod1()

4. tearDown()

5. setUp()

6. testMethod2()

7. tearDown()

8. oneTimeTearDown()

One-time setup
runs at start of
suite, and
teardown runs
at end of suite.

Per-method
setup runs
before each
test method,
and teardown
runs after
each method.

Figure 3.2: Execution Order of Setup Code

For example, suppose you needed some sort of database con-
nection object for each test. Rather than have to include code
in each test method that connects to and disconnects from
the database, you could take care of that using the setup and
teardown methods.

public class TestDB extends TestCase {
private Connection dbConn;

protected void setUp() {
dbConn = new Connection("oracle", 1521,

"fred", "foobar");
dbConn.connect();

}
protected void tearDown() {
dbConn.disconnect();
dbConn = null;

}
public void testAccountAccess() {
// Uses dbConn
xxx xxx xxxxxx xxx xxxxxxxxx;
xx xxx xxx xxxx x xx xxxx;

}
public void testEmployeeAccess() {
// Uses dbConn
xxx xxx xxxxxx xxx xxxxxxxxx;
xxxx x x xx xxx xx xxxx;

}
}

In this example, setUp() will be called before testAccount-
Access(), then tearDown() will be called. setUp() will be
called again, followed by testEmployeeAccess() and then
tearDown() again.

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST COMPOSITION 31

Per-suite Setup and Tear-down

Normally per-test setup is all you need, but in some circum-
stances you may need to set something up or clean up after
the entire test suite has run; for that, you need per-suite setup
and tear-down (the difference between per-test and per-suite
execution order is shown in Figure 3.2 on the page before).

Per-suite setup is a bit more complicated. You need to provide
a suite of the required tests (by whatever means) and wrap
it in a TestSetup object. Using our previous example, that
might look something like the following:

import junit.framework.*;
import junit.extensions.*;

public class TestClassTwo extends TestCase {
private static TSP tsp;

public TestClassTwo(String method) {
super(method);

}
// This one takes a few hours...
public void testLongRunner() {
assertEquals(2300, tsp.shortestPath(50));

}
public void testShortTest() {
assertEquals(140, tsp.shortestPath(5));

}
public void testAnotherShortTest() {
assertEquals(586, tsp.shortestPath(10));

}
public static Test suite() {
TestSuite suite = new TestSuite();
// Only include short tests
suite.addTest(new TestClassTwo("testShortTest"));
suite.addTest(new TestClassTwo(

"testAnotherShortTest"));

TestSetup wrapper = new TestSetup(suite) {
protected void setUp() {
oneTimeSetUp();

}
protected void tearDown() {
oneTimeTearDown();

}
};

return wrapper;

}
public static void oneTimeSetUp() {
// one-time initialization code goes here...
tsp = new TSP();
tsp.loadCities("EasternSeaboard");

Prepared exclusively for Francilene Procopio Garcia

JUNIT CUSTOM ASSERTS 32

}
public static void oneTimeTearDown() {
// one-time cleanup code goes here...
tsp.releaseCities();

}
} Te

st
C

la
ss

Tw
o

.ja
va

Note that you can use both per-suite and per-test setUp()
methods in the same class.

3.5 JUnit Custom Asserts

The standard asserts that JUnit provides are usually suffi-
cient for most testing. However, you may run into a situation
where it would be handy to have your own, customized as-
serts. Perhaps you’ve got a special data type, or a common
sequence of actions that is done in multiple tests.

Don’t copy and paste common code in the tests; tests should
be written to the same high standards as regular code, which
means honoring good coding practices such as the DRY prin-
ciple,1 orthogonality, and so on. Factor out common bits of
test harness into real methods, and use those methods in
your test cases.

If you have custom asserts or common code that needs to
be shared throughout the project, you may want to consider
subclassing TestCase and using the subclass for all testing.
For instance, suppose you are testing a financial application
and virtually all of the tests use a data type called Money. In-
stead of having tests subclass TestCase directly, you’d create
a project-specific base testing class:

import junit.framework.*;

/**
* Project-wide base class for Testing
*/

public class ProjectTest extends TestCase {
/**
* Assert that the amount of money is an even
* number of dollars (no cents)
*

1DRY stands for “Don’t Repeat Yourself.” It’s a fundamental technique
that demands that every piece of knowledge in a system must have a single,
unambiguous, and authoritative representation [HT00].

Prepared exclusively for Francilene Procopio Garcia

JUNIT AND EXCEPTIONS 33

* @param message Text message to display if the
* assertion fails
* @param amount Money object to test
*
*/

public void assertEvenDollars(String message,

Money amount) {
assertEquals(message,

amount.asDouble() - (int)amount.asDouble(),
0.0,
0.001);

}
/**
* Assert that the amount of money is an even
* number of dollars (no cents)
*
* @param amount Money object to test
*
*/

public void assertEvenDollars(Money amount) {
assertEvenDollars("", amount);

}
} Pr

o
je

c
tT

e
st

.ja
va

Note that we provide both forms of assert: one that takes a
String and one that does not. Note also that we didn’t copy
any code in doing so; we merely forward the call on.

Now all the other test classes in the project will inherit from
this base class instead of directly from TestCase:

public class TestSomething extends ProjectTest {
...

In fact, it is usually a good idea to start off a new project by
always inheriting from your own custom base class instead of
directly from the JUnit class—even if your base class doesn’t
add any extra functionality at first. That way, should you need
to add a method or capability that every test class needs, you
can simply add it to your base class without having to edit
every test case in the project.

3.6 JUnit and Exceptions

There are two kinds of exceptions that we might be interested
in:

1. Expected exceptions resulting from a test

2. Unexpected exceptions from something that’s gone hor-
ribly wrong

Prepared exclusively for Francilene Procopio Garcia

JUNIT AND EXCEPTIONS 34

Contrary to what you might think, exceptions are really good
things—they tell us that something is wrong. Sometimes in a
test, we want the method under test to throw an exception.
Consider a method named sortMyList(). It’s supposed to
throw an exception if passed a null list. We must test for that
explicitly.

Line 1 public void testForException() {
- try {
- sortMyList(null);
- fail("Should have thrown an exception");
5 } catch (RuntimeException e) {
- assertTrue(true);
- }
- }

The method call under test is within a try/catch block on line
3. This method is expected to throw an exception, so if it
doesn’t—if we proceed past line 3—then we need to fail the
test immediately. If the exception fires as expected, the code
will proceed to line 6 and record the assertion for statistical
purposes.

Now you might ask why bother with the assertTrue. It won’t
do anything, it can’t fail, so why bother putting it in? Any use
of assertTrue(true) translates as “I expect that the control
flow should pass through here.” That’s a strong form of docu-
mentation that will help clear up any possible misunderstand-
ings later. However, don’t forget that an assertTrue(true)

that is never called does not generate a failure.

In general, you should test a method for every declared ex-
ception, and make sure that it throws it when it should. That
covers us for expected exceptions, but what about unexpected
exceptions?

While you can catch all possible exceptions yourself and call
JUnit’s fail(), you’d be better off letting JUnit do the hard
work. For instance, suppose you are reading a file of test
data. Rather than catching the possible I/O exceptions your-
self, simply declare your test method to throw the possible
exceptions:

public void testData1() throws FileNotFoundException {
FileInputStream in = new FileInputStream("data.txt"):
xxx xxx xxxxxx xxxxx xxxx;

}

Prepared exclusively for Francilene Procopio Garcia

MORE ON NAMING 35

The JUnit framework will catch any thrown exception and re-
port it as an error, without any extra effort on your part. Even
better, JUnit will report the entire stack trace right down to
the bug itself, not just to the failed assert, which is of tremen-
dous help when trying to figure out why a test failed.

3.7 More on Naming

Normally, you want all tests to pass all of the time. But sup-
pose you’ve thought up a bunch of tests first, written them,
and are now working your way through implementing the
code required to pass the tests. What about all those new
tests that would fail now?

You can go ahead and write these tests, but you don’t want
the testing framework to run these tests just yet. Fortunately,
most testing frameworks use a naming convention to discover
tests automatically. When using JUnit in Java, for instance,
methods whose names start with “test” (as in testMyThing)
will be run as tests; all you need to do is name the method
something else until you’re ready to tackle it. If you named
pending tests as “pendingTestMyThing”, then not only will
the testing framework ignore it for now, but you could also
search for the string “pendingTest” throughout your code to
find easily any tests you may have missed. Of course, the
code still has to compile cleanly; if it’s not ready for that yet,
then you should comment out the offending parts.

What you want to avoid at all costs is the habit of ignoring
failing test results.

3.8 JUnit Test Skeleton

All you really need to write tests using JUnit are just these
three things:

1. An import statement to bring in junit.framework.*

2. An extends statement so your class will inherit from
TestCase

3. A constructor with a call to super(string)

Prepared exclusively for Francilene Procopio Garcia

JUNIT TEST SKELETON 36

Many IDE’s will supply at least this much for you. Classes
written this way can be run using a JUnit test runner, and
will automatically execute all of the test. . . methods in the
class.

But sometimes it’s more convenient to be able to run a test
class directly, without running it from a JUnit runner. And
what were the names of those methods that ran before and
after each test?

We can make a skeleton that provides all of these features and
more pretty easily. If this would be helpful for your project,
take a look at Appendix C on page 127.

Now that you’ve got a good idea of how to write tests, it’s time
to take a closer look at figuring out what to test.

Prepared exclusively for Francilene Procopio Garcia

Chapter 4

What to Test:
The Right-BICEP

It can be hard to look at a method or a class and try to come
up with all the ways it might fail; to anticipate all the bugs
that might be lurking in there. With enough experience, you
start to get a feel for those things that are “likely to break,”
and can effectively concentrate testing in those areas first.
But without a lot of experience, it can be hard and frustrating
trying to discover possible failure modes. End-users are quite
adept at finding our bugs, but that’s both embarrassing and
damaging to our careers! What we need are some guidelines,
some reminders of areas that might be important to test.

Let’s take a look at six specific areas to test that will strength-
en your testing skills, using your RIGHT -BICEP:

• Right — Are the results right?

• B — Are all the boundary conditions CORRECT?

• I — Can you check inverse relationships?

• C — Can you cross-check results using other means?

• E — Can you force error conditions to happen?

• P — Are performance characteristics within bounds?

ARE THE RESULTS RIGHT? 38

4.1 Are the Results Right?

The first and most obvious area to test is simply to see if the Right BICEP

expected results are right—to validate the results.

We’ve seen simple data validation already: the tests in Chap-
ter 2 that verify that a method returns the largest number
from a list.

These are usually the “easy” tests, and many of these sorts of
validations may even be specified in the requirements. If they
aren’t, you’ll probably need to ask someone. You need to be
able to answer the key question:

If the code ran correctly, how would I know?

If you cannot answer this question satisfactorily, then writing
the code—or the test—may be a complete waste of time. “But
wait,” you may say, “that doesn’t sound very agile! What if
the requirements are vague or incomplete? Does that mean
we can’t write code until all the requirements are firm?”

No, not at all. If the requirements are truly not yet known,
or complete, you can always invent some as a stake in the
ground. They may not be correct from the user’s point of
view, but you now know what you think the code should do,
and so you can answer the question.

Of course, you must then arrange for feedback with users to
fine-tune your assumptions. The definition of “correct” may
change over the lifetime of the code in question, but at any
point, you should be able to prove that it’s doing what you
think it ought.

Using Data Files

For sets of tests with large amounts of test data, you might
want to consider putting the test values and/or results in a
separate data file that the unit test reads in. This doesn’t
need to be a very complicated exercise—and you don’t even
need to use XML.1 Figure 4.1 on the next page is a version
of TestLargest that reads in all of the tests from a data file.

1This is clearly a joke. XML is mandatory on all projects today, isn’t it?

Prepared exclusively for Francilene Procopio Garcia

ARE THE RESULTS RIGHT? 39

import junit.framework.*;
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;

public class TestLargestDataFile extends TestCase {
public TestLargestDataFile(String name) {
super(name);

}
/* Run all the tests in testdata.txt (does not test
* exception case). We’ll get an error if any of the
* file I/O goes wrong.
*/

public void testFromFile() throws Exception {
String line;
BufferedReader rdr = new BufferedReader(

new FileReader(
"testdata.txt"));

while ((line = rdr.readLine()) != null) {
if (line.startsWith("#")) { // Ignore comments

continue;

}
StringTokenizer st = new StringTokenizer(line);

if (!st.hasMoreTokens()) {
continue; // Blank line

}
// Get the expected value
String val = st.nextToken();
int expected = Integer.valueOf(val).intValue();

// And the arguments to Largest
ArrayList argument_list = new ArrayList();

while (st.hasMoreTokens()) {
argument_list.add(Integer.valueOf(

st.nextToken()));

}
// Transfer object list into native array
int[] arguments = new int[argument_list.size()];

for (int i=0; i < argument_list.size(); i++) {
arguments[i] = ((Integer)argument_list.

get(i)).intValue();

}
// And run the assert
assertEquals(expected,

Largest.largest(arguments));

}
}

}

Figure 4.1: TestLargestDataFile: Reading test specifications
from a file.

Prepared exclusively for Francilene Procopio Garcia

ARE THE RESULTS RIGHT? 40

The data file has a very simple format; each line contains a
set of numbers. The first number is the expected answer, the
numbers on the rest of the line are the arguments with which
to test. We’ll allow a pound-sign (#) for comments, so that you
can put meaningful descriptions and notes in the test file.

The test file can then be as simple as:

#
Simple tests:
#
9 7 8 9
9 9 8 7
9 9 8 9

#
Negative number tests:
#
-7 -7 -8 -9
-7 -8 -7 -8
-7 -9 -7 -8

#
Mixture:
#
7 -9 -7 -8 7 6 4
0 -1 0 9 -7 4

#
Boundary conditions:
#
1 1
0 0
2147483647 2147483647
-2147483648 -2147483648 te

st
d

a
ta

.t
xt

For just a handful of tests, as in this example, it’s probably
not worth the effort. But say this was a more advanced appli-
cation, with tens or even hundreds of test cases in this form.
Then the data file approach becomes a very compelling choice.

Be aware that test data, whether it’s in a file or in the test
code itself, might well be incorrect. In fact, experience sug-
gests that test data is more likely to be incorrect than the
code you’re testing, especially if the data was hand-calculated
or obtained from a system we’re replacing (where new fea-
tures may deliberately cause new results). When test data
says you’re wrong, double- and triple-check that the test data
is right before attacking the code.

Something else to think about: the code as presented does
not test any exception cases. How might you implement that?

Do whatever makes it easiest for you to prove that the method
is right.

Prepared exclusively for Francilene Procopio Garcia

BOUNDARY CONDITIONS 41

4.2 Boundary Conditions

In the previous “largest number” example, we discovered sev- Right B ICEP

eral boundary conditions: when the largest value was at the
end of the array, when the array contained a negative number,
an empty array, and so on.

Identifying boundary conditions is one of the most valuable
parts of unit testing, because this is where most bugs gen-
erally live—at the edges. Some conditions you might want to
think about:

• Totally bogus or inconsistent input values, such as a file
name of "!*W:X\&Gi/w∼>g/h#WQ@".

• Badly formatted data, such as an e-mail address without
a top-level domain ("fred@foobar.").

• Empty or missing values (such as 0, 0.0, "", or null).

• Values far in excess of reasonable expectations, such as
a person’s age of 10,000 years.

• Duplicates in lists that shouldn’t have duplicates.

• Ordered lists that aren’t, and vice-versa. Try handing a
pre-sorted list to a sort algorithm, for instance—or even
a reverse-sorted list.

• Things that arrive out of order, or happen out of expected
order, such as trying to print a document before logging
in, for instance.

An easy way to think of possible boundary conditions is to
remember the acronym CORRECT. For each of these items,
consider whether or not similar conditions may exist in your
method that you want to test, and what might happen if these
conditions were violated:

• Conformance — Does the value conform to an expected
format?

• Ordering — Is the set of values ordered or unordered as
appropriate?

• Range — Is the value within reasonable minimum and
maximum values?

Prepared exclusively for Francilene Procopio Garcia

CHECK INVERSE RELATIONSHIPS 42

• Reference — Does the code reference anything external
that isn’t under direct control of the code itself?

• Existence — Does the value exist (e.g., is non-null, non-
zero, present in a set, etc.)?

• Cardinality — Are there exactly enough values?

• Time (absolute and relative) — Is everything happening
in order? At the right time? In time?

We’ll examine all of these boundary conditions in the next
chapter.

4.3 Check Inverse Relationships

Some methods can be checked by applying their logical in- Right B I CEP

verse. For instance you might check a method that calculates
a square root by squaring the result, and testing that it is
tolerably close to the original number:

public void testSquareRootUsingInverse() {
double x = mySquareRoot(4.0);
assertEquals(4.0, x * x, 0.0001);

}

You might check that some data was successfully inserted
into a database by then searching for it, and so on.

Be cautious when you’ve written both the original routine
and it’s inverse, as some bugs might be masked by a com-
mon error in both routines. Where possible, use a different
source for the inverse test. In the square root example, we’re
just using regular multiplication to test our method. For the
database search, we’ll probably use a vendor-provided search
routine to test our insertion.

4.4 Cross-check Using Other Means

You might also be able to cross-check results of your method Right BI C EP

using different means.

Usually there is more than one way to calculate some quan-
tity; we might pick one algorithm over the others because it
performs better, or has other desirable characteristics. That’s

Prepared exclusively for Francilene Procopio Garcia

FORCE ERROR CONDITIONS 43

the one we’ll use in production, but we can use one of the
other versions to cross-check our results in the test system.
This technique is especially helpful when there’s a proven,
known way of accomplishing the task that happens to be too
slow or too inflexible to use in production code.

We can use that somewhat lesser version to our advantage
to check that our new super-spiffy version is producing the
same results:2

public void testSquareRootUsingStd() {
double number = 3880900.0;
double root1 = mySquareRoot(number);
double root2 = Math.sqrt(number);
assertEquals(root2, root1, 0.0001);

}

Another way of looking at this is to use different pieces of
data from the class itself to make sure they all “add up.” For
instance, suppose you had some sort of library database sys-
tem. In this system, the number of copies of a particular book
should always balance. That is, the number of copies that are
checked out plus the number of copies sitting on the shelves
should always equal the total number of copies in the col-
lection. These are separate pieces of data, and may even be
reported by objects of different classes, but they still have to
agree, and so can be used to cross-check one another.

4.5 Force Error Conditions

In the real world, errors happen. Disks fill up, network lines Right BIC E P

drop, e-mail goes into a black hole, and programs crash. You
should be able to test that your code handles all of these real-
world problems by forcing errors to occur.

That’s easy enough to do with invalid parameters and the like,
but to simulate specific network errors—without unplugging
any cables—takes some special techniques. We’ll discuss one
way to do this using Mock Objects in Chapter 6 on page 63.

2Some spreadsheet engines (as found in Microsoft ExcelTM, etc.) employ
similar techniques to check that the models and methods chosen to solve
a particular problem are appropriate, and that the answers from different
applicable methods agree with each other.

Prepared exclusively for Francilene Procopio Garcia

PERFORMANCE CHARACTERISTICS 44

But before we get there, consider what kinds of errors or other
environmental constraints you might introduce to test your
method? Make a short list before reading further.

STOPThink about this for a moment before reading on. . .

Here are a few environmental things we’ve thought of.

• Running out of memory

• Running out of disk space

• Issues with wall-clock time

• Network availability and errors

• System load

• Limited color palette

• Very high or very low video resolution

4.6 Performance Characteristics

One area that might prove beneficial to examine is perfor- Right BICE P

mance characteristics—not performance itself, but trends as
input sizes grow, as problems become more complex, and so
on.

What we’d like to achieve is a quick regression test of per-
formance characteristics. All too often, we might release one
version of the system that works okay, but somehow by the
next release it has become dead-dog slow. We don’t know
why, or what change was made, or when, or who did it, or
anything. And the end users are screaming bloody murder.

To avoid that awkward scenario, you might consider some
rough tests just to make sure that the performance curve re-
mains stable. For instance, suppose we’ve written a filter that
identifies web sites that we wish to block (using our new prod-
uct to view naughty pictures might get us in all sorts of legal
trouble, after all.)

Prepared exclusively for Francilene Procopio Garcia

PERFORMANCE CHARACTERISTICS 45

The code works fine with a few dozen sample sites, but will it
work as well with 10,000? 100,000? Let’s write a test to find
out.

public void testURLFilter() {
Timer timer = new Timer();
String naughty_url = "http://www.xxxxxxxxxxx.com";

// First, check a bad URL against a small list
URLFilter filter = new URLFilter(small_list);

timer.start();
filter.check(naughty_url);
timer.end();

assertTrue(timer.elapsedTime() < 1.0);

// Next, check a bad URL against a big list
URLFilter f = new URLFilter(big_list);

timer.start();
filter.check(naughty_url);
timer.end();

assertTrue(timer.elapsedTime() < 2.0);

// Finally, check a bad URL against a huge list
URLFilter f = new URLFilter(huge_list);

timer.start();
filter.check(naughty_url);
timer.end();

assertTrue(timer.elapsedTime() < 3.0);

}

This gives us some assurance that we’re still meeting perfor-
mance targets. But because this one test takes 6–7 seconds
to run, we may not want to run it every time. As long as we
run it nightly or every couple of days, we’ll quickly be alerted
to any problems we may introduce, while there is still time to
fix them.

You may want to investigate test decorators that provide bet-
ter support for timing individual tests, simulating heavy load
conditions, and so on, such as the freely available JUnitPerf.3

3http://www.clarkware.com

Prepared exclusively for Francilene Procopio Garcia

Chapter 5

CORRECT
Boundary Conditions

Many bugs in code occur around “boundary conditions,” that
is, under conditions where the code’s behavior may be differ-
ent from the normal, day-to-day routine.

For instance, suppose you have a function that takes two in-
tegers:

public int calculate(int a, int b) {
return a / (a + b);

}

Most of the time, this code will return a number just as you
expect. But if the sum of a and b happens to equal zero, you’ll
get an ArithmeticException instead of a return value. That
is a boundary condition—a place where things might suddenly
go wrong, or at least behave differently from your expecta-
tions.

To help you think of tests for boundary conditions, we’ll use
the acronym CORRECT:

• Conformance — Does the value conform to an expected
format?

• Ordering — Is the set of values ordered or unordered as
appropriate?

CONFORMANCE 47

• Range — Is the value within reasonable minimum and
maximum values?

• Reference — Does the code reference anything external
that isn’t under direct control of the code itself?

• Existence — Does the value exist (e.g., is non-null, non-
zero, present in a set, etc.)?

• Cardinality — Are there exactly enough values?

• Time (absolute and relative) — Is everything happening
in order? At the right time? In time?

Let’s look at each one of these in turn. Remember that for
each of these areas, you want to consider data that is passed
in as arguments to your method as well as internal data that
you maintain inside your method and class.

The underlying question that you want to answer fully is:

What else can go wrong?

Once you think of something that could go wrong, write a test
for it. Once that test passes, again ask yourself, “what else
can go wrong?” and write another test, and so on.

5.1 Conformance

Many times you expect or produce data that must conform to C ORRECT

some specific format. An e-mail address, for instance, isn’t
just a simple string. You expect that it must be of the form:

name@somewhere.com

With the possibility of extra dotted parts:

firstname.lastname@subdomain.somewhere.com

And even oddballs like this one:
firstname.lastname%somewhere@subdomain.somewhere.com

Suppose you are writing a method that will extract the user’s
name from their e-mail address. You’ll expect that the user’s
name is the portion before the “@” sign. What will your code
do if there is no “@” sign? Will it work? Throw a runtime
exception? Is this a boundary condition you need to consider?

Prepared exclusively for Francilene Procopio Garcia

ORDERING 48

Validating formatted string data such as e-mail addresses,
phone numbers, account numbers, or file names is usually
straightforward. But what about more complex structured
data? Suppose you are reading some sort of report data that
contains a header record linked to some number of data rec-
ords, and finally to a trailer record. How many conditions
might we have to test?

• What if there’s no header, just data and a trailer?

• What if there’s no data, just a header and trailer?

• What if there’s no trailer, just a header and data?

• What if there’s just a trailer?

• What if there’s just a header?

• What if there’s just data?

Just as with the simpler e-mail address example, you have to
consider what will happen if the data does not conform to the
structure you think it should.

And of course, if you are creating something like an e-mail
address (possibly building it up from different sources) or the
structured data above, you want to test your result to make
sure it conforms.

5.2 Ordering

Another area to consider is the order of data, or the position C O RRECT

of one piece of data within a larger collection. For instance,
in the largest() example in the previous chapter, one bug
manifested itself depending on whether the largest number
you were searching for was at the beginning or end of the list.

That’s one aspect of ordering. Any kind of search routine
should be tested for conditions where the search target is first
or last, as many common bugs can be found that way.

For another aspect of ordering, suppose you are writing a
method that is passed a collection containing a restaurant
order. You would probably expect that the appetizers will ap-
pear first in the order, followed by the salad (and that all-

Prepared exclusively for Francilene Procopio Garcia

ORDERING 49

important dressing choice), then the entree and finally a deca-
dent dessert involving lots of chocolate.

What happens to your code if the dessert is first, and the
entree is last?

If there’s a chance that sort of thing can happen, and if it’s the
responsibility of your method to deal with it if it does, then you
need to test for this condition and address the problem. Now,
it may be that this is not something your method needs to
worry about. Perhaps this needs to be addressed at the user
input level (see “Testing Invalid Parameters” later on).

If you’re writing a sort routine, what might happen if the set
of data is already ordered? Or worse yet, sorted in precisely
reverse order? Ask yourself if that could cause trouble—if
these are conditions that might be worth testing, too.

If you are supposed to maintain something in order, check
that it is. For example, if your method is part of the GUI that is
sending the dinner order back to the kitchen, you should have
a test that verifies that the items are in the correct serving
order:

public void testKitchenOrder() {
Order order = new Order();
FoodItem desert = new Desert("Chocolate Decadence");
FoodItem entree = new Entree("Beef Oscar");
FoodItem salad = new Salad("Tossed",

"Parmesan Peppercorn");

// Add out of order
order.addFoodItem(desert);
order.addFoodItem(entree);
order.addFoodItem(salad);

// But should come out in serving order
Iterator itr = order.iterator();

assertEquals(itr.next(), salad);
assertEquals(itr.next(), entree);
assertEquals(itr.next(), desert);

// No more left
assertFalse(itr.hasNext());

}

Of course, from a human factors standpoint, you’d need to
modify the code so that it’s flexible enough to allow people to
eat their ice cream first, if so desired. In which case, you’d
need to add a test to prove that your four-year old nephew’s
ice cream comes with everyone else’s salads, but Grandma’s
ice cream comes at the end with your cappuccino.

Prepared exclusively for Francilene Procopio Garcia

RANGE 50

5.3 Range

Range is a convenient catch-all word for the situation where a CO R RECT

variable’s type allows it to take on a wider range of values than
you need—or want. For instance, a person’s age is typically
represented as an integer, but no one has ever lived to be
200,000 years old, even though that’s a perfectly valid integer
value. Similarly, there are only 360 degrees in a circle, even
though degrees are commonly stored in an integer.

In good object oriented design, you do not use a raw native
type (e.g., an int or Integer) to store a bounded-integer
value such as an age, or a compass heading.

/**
* Compass bearing
*/

public class Bearing {
protected int bearing; // 0..359

/**
* Initialize a bearing to a value from 0..359
*/

public Bearing(int num_degrees) {
if (num_degrees < 0 || num_degrees > 359) {

throw new RuntimeException("Bad bearing");

}
bearing = num_degrees;

}
/**
* Return the angle between our bearing and another.
* May be negative.
*/

public int angleBetween(Bearing anOther) {
return bearing - anOther.bearing;

}
} Be

a
rin

g
.ja

va

Notice that the angle returned is just an int, as we are not
placing any range restrictions on the result (it may be nega-
tive, etc.)

But by encapsulating the concept of a bearing within a class,
you’ve now got one point in the system that can filter out bad
data. You cannot create a Bearing object with any values out
of range. Thus, the whole rest of the system can use Bear-

ing objects and be assured that they contain only reasonable
values.

Other ranges may not be as straightforward. For instance,
suppose you have a class that maintains two sets of x, y co-

Prepared exclusively for Francilene Procopio Garcia

RANGE 51

ordinates. These are just integers, with arbitrary values, but
the constraint on the range is such that the two points must
describe a rectangle with no side greater than 100 units. That
is, the allowed range of values for both x, y pairs is interdepen-
dent. You’ll want a range test for any method that can affect a
coordinate to ensure that the resulting range of the x, y pairs
remains legitimate. For more information on this topic, see
“invariants” in the Design Issues chapter on page 99.

Since you will likely call this from a number of different tests,
it probably makes sense to make a new assert method:

public static final int MAX_DIST = 100;

public void assertPairRange(String message,

Point one, Point two) {
assertTrue(message,

Math.abs(one.x - two.x) <= MAX_DIST);
assertTrue(message,

Math.abs(one.y - two.y) <= MAX_DIST);

}

But the most common ranges you’ll want to test probably de-
pend on physical data structure issues, not application do-
main constraints. Take a simple example like a stack class
that implements a stack of Strings using an array:

public class MyStack {
public MyStack() {
stack = new String[100];
next_index = 0;

}
public String pop() {
return stack[--next_index];

}
// Delete n items from the stack en-masse
public void delete(int n) {
next_index -= n;

}
public void push(String aString) {
stack[next_index++] = aString;

}
public String top() {
return stack[next_index-1];

}
private int next_index;
private String[] stack;

} M
yS

ta
c

k.
ja

va

There are some potential bugs lurking here, as there are no
checks at all for either an empty stack or a stack overflow.

Prepared exclusively for Francilene Procopio Garcia

RANGE 52

However we manipulate the index variable next index, one
thing is supposed to be always true: (next index >= 0 &&

next index < stack.length). We’d like to check that to
make sure.

Now both next index and stack are private variables; you
don’t want to have to expose those just for the sake of testing.
There are several ways around this problem; for now we’ll just
make a special method in Stack named checkInvariant():

public void checkInvariant()

throws InvariantException {
// JDK 1.4 can use assert() instead
if (!(next_index >= 0 &&

next_index < stack.length)) {
throw new InvariantException(

"next_index out of range: " +
next_index +
" for stack length " +
stack.length);

}
} M

yS
ta

c
k.

ja
va

Now a test method can call checkInvariant() to ensure that
nothing has gone awry inside the guts of the stack class, with-
out having direct access to those same guts.

import junit.framework.*;

public class TestMyStack extends TestCase {
public void testEmpty() throws InvariantException {
MyStack stack = new MyStack();

stack.checkInvariant();
stack.push("sample");
stack.checkInvariant();

// Popping last element ok
assertEquals("sample", stack.pop());
stack.checkInvariant();

// Delete from empty stack
stack.delete(1);
stack.checkInvariant();

}
} Te

st
M

yS
ta

c
k.

ja
va

When you run this test, you’ll quickly see that we need to add
some range checking!

There was 1 error:
1) testEmpty(TestMyStack)InvariantException:

next_index out of range: -1 for stack length of 100
at MyStack.checkInvariant(MyStack.java:31)
at TestMyStack.testEmpty(TestMyStack.java:16)

Prepared exclusively for Francilene Procopio Garcia

REFERENCE 53

It’s much easier to find and fix this sort of error here in a sim-
ple testing environment instead of buried in a real application.

Almost any indexing concept (whether it’s a genuine integer
index or not) should be extensively tested. Here are a few
ideas to get you started:

• Start and End index have the same value

• First is greater than Last

• Index is negative

• Index is greater than allowed

• Count doesn’t match actual number of items

• . . .

5.4 Reference

What things does your method reference that are outside the COR R ECT

scope of the method itself? Any external dependencies? What
state does the class have to have? What other conditions must
exist in order for the method to work?

For example, a method in a web application to display a cus-
tomer’s account history might require that the customer is
first logged on. The method pop() for a stack requires a non-
empty stack. Shifting the transmission in your car to Park
from Drive requires that the car is stopped.

If you have to make assumptions about the state of the class
and the state of other objects or the global application, then
you need to test your code to make sure that it is well-behaved
if those conditions are not met. For example, the code for
the microprocessor-controlled transmission might have unit
tests that check for that particular condition: the state of the
transmission (whether it can shift into Park or not) depends
on the state of the car (is it in motion or stopped).

public void testJamItIntoPark() {
transmission.select(DRIVE);
car.accelerateTo(35);
assertEquals(DRIVE, transmission.getSelect());

// should silently ignore
transmission.select(PARK);
assertEquals(DRIVE, transmission.getSelect());

Prepared exclusively for Francilene Procopio Garcia

EXISTENCE 54

car.accelerateTo(0); // i.e., stop
car.brakeToStop();

// should work now
transmission.select(PARK);
assertEquals(PARK, transmission.getSelect());

}

The preconditions for a given method specify what state the
world must be in for this method to run. In this case, the pre-
condition for putting the transmission in park is that the car’s
engine (a separate component elsewhere in the application’s
world) must be at a stop. That’s a documented requirement
for the method, so we want to make sure that the method
will behave gracefully (in this particular case, just ignore the
request silently) in case the precondition is not met.

At the end of the method, postconditions are those things that
you guarantee your method will make happen. Direct results
returned by the method are one obvious thing to check, but if
the method has any side-effects then you need to check those
as well. In this case, applying the brakes has the side effect
of stopping the car.

Some languages even have built-in support for preconditions
and postconditions; interested readers might want to read
about Eiffel in Object-Oriented Software Construction [Mey97].

5.5 Existence

A large number of potential bugs can be discovered by asking CORR E CT

the key question “does some given thing exist?”.

For any value you are passed in or maintain, ask yourself
what would happen to the method if the value didn’t exist—if
it were null, or blank, or zero.

Many Java library methods will throw an exception of some
sort when faced with non-existent data. The problem is that
it’s hard to debug a generic runtime exception buried deep
in some library. But an exception that reports “Age isn’t set”
makes tracking down the problem much easier.

Most methods will blow up if expected data is not available,
and that’s probably not what you want them to do. So you

Prepared exclusively for Francilene Procopio Garcia

CARDINALITY 55

test for the condition—see what happens if you get a null in-
stead of a CustomerRecord because some search failed. See
what happens if the file doesn’t exist, or if the network is un-
available.

Ah, yes: things in the environment can wink out of existence
as well—networks, files’ URLs, license keys, users, printers—
you name it. All of these thing may not exist when you expect
them to, so be sure to test with plenty of nulls, zeros, empty
strings and other nihilist trappings.

Make sure your method can stand up to nothing.

5.6 Cardinality

Cardinality has nothing to do with either highly-placed reli- CORRE C T

gious figures or small red birds, but instead with counting.

Computer programmers (your humble authors included) are
really bad at counting, especially past 10 when the fingers
can no longer assist us. For instance, answer the following
question quickly, off the top of your head, without benefit of
fingers, paper, or UML:

If you’ve got 12 feet of lawn that you want to fence,
and each section of fencing is 3 feet wide, how many
fence posts do you need?

If you’re like most of us, you probably answered “4” without
thinking too hard about it. Pity is, that’s wrong—you need five
fence posts as shown in Figure 5.1 on page 57. This model,
and the subsequent common errors, come up so often that
they are graced with the name “fencepost errors.”

It’s one of many ways you can end up being “off by one;” an
occasionally fatal condition that afflicts all programmers from
time to time. So you need to think about ways to test how
well your method counts, and check to see just how many of
a thing you may have.

It’s a related problem to Existence, but now you want to make
sure you have exactly as many as you need, or that you’ve
made exactly as many as needed. In most cases, the count of
some set of values is only interesting in these three cases:

Prepared exclusively for Francilene Procopio Garcia

CARDINALITY 56

1. Zero

2. One

3. More than one

It’s called the “0–1–n Rule,” and it’s based on the premise that
if you can handle more than one of something, you can prob-
ably handle 10, 20, or 1,000 just as easily. Most of the time
that’s true, so many of our tests for cardinality are concerned
with whether we have 2 or more of something. Of course there
are situations where an exact count makes a difference—10
might be important to you, or 250.

Suppose you are maintaining a list of the Top-Ten food items
ordered in a pancake house. Every time an order is taken, you
have to adjust the top-ten list. You also provide the current
top-ten list as a real-time data feed to the pancake boss’s PDA.
What sort of things might you want to test for?

• Can you produce a report when there aren’t yet ten items
in the list?

• Can you produce a report when there are no items on
the list?

• Can you produce a report when there is only one item on
the list?

• Can you add an item when there aren’t yet ten items in
the list?

• Can you add an item when there are no items on the list?

• Can you add an item when there is only one item on the
list?

• What if there aren’t ten items on the menu?

• What if there are no items on the menu?

Having gone through all that, the boss now changes his mind
and wants a top-twenty list instead. What do you have to
change?

The correct answer is “one line,” something like the following:

private final static int NUMBER_TO_RETAIN = 20;

Prepared exclusively for Francilene Procopio Garcia

TIME 57

12 feet

3 feet 3 feet 3 feet 3 feet

1 5432

Figure 5.1: A Set of Fenceposts

Now, when the boss gets overwhelmed and pleads with you
to change this to be a top-five report (his PDA is pretty small,
after all), you can go back and change this one number. The
test should automatically follow suit, because you’ve got an
accessor such as the following:

public int getMaxEntries() {
return NUMBER_TO_RETAIN;

}

So in the end, the tests concentrate on boundary conditions
of 0, 1, and n, where n can—and will—change as the business
demands.

5.7 Time

The last boundary condition in the CORRECT acronym is CORREC T

Time. There are several aspects to time you need to keep
in mind:

• Relative time (ordering in time)

• Absolute time (elapsed and wall clock)

• Concurrency issues

Prepared exclusively for Francilene Procopio Garcia

TIME 58

Some interfaces are inherently stateful; you expect that lo-
gin() will be called before logout(), that prepareState-
ment() is called before executeStatement(), connect()

before read() which is before close(), and so on.

What happens if those methods are called out of order? Maybe
you should try calling methods out of the expected order. Try
skipping the first, last and middle of a sequence. Just as order
of data may have mattered to you in the earlier examples (as
we described in “Ordering” on page 48), now it’s the order of
the calling sequence of methods.

Relative time might also include issues of timeouts in the
code: how long your method is willing to wait for some ephem-
eral resource to become available. As we’ll discuss shortly,
you’ll want to exercise possible error conditions in your code,
including things such as timeouts. Maybe you’ve got con-
ditions that aren’t guarded by timeouts—can you think of a
situation where the code might get “stuck” waiting forever for
something that might not happen?

This leads us to issues of elapsed time. What if something you
are waiting for takes “too much” time? What if your method
takes too much time to return to the caller?

Then there’s the actual wall clock time to consider. Most of
the time, this makes no difference whatsoever to code. But
every now and then, time of day will matter, perhaps in subtle
ways. Here’s a quick question, true or false: every day of the
year is 24 hours long?

The answer is “it depends.” In UTC (Universal Coordinated
Time, the modern version of Greenwich Mean Time, or GMT),
the answer is YES. In areas of the world that do not observe
Daylight Savings Time (DST), the answer is YES. In most of
the U.S. (which does observe DST), the answer is NO. In April,
you’ll have a day with 23 hours (spring forward) and in Oc-
tober you’ll have a day with 25 (fall back). This means that
arithmetic won’t always work as you expect; 1:45AM plus 30
minutes might equal 1:15, for instance.

But you’ve tested any time-sensitive code on those boundary
days, right? For locations that honor DST and for those that
do not?

Prepared exclusively for Francilene Procopio Garcia

TRY IT YOURSELF 59

Oh, and don’t assume that any underlying library handles
these issues correctly on your behalf. Unfortunately, when it
comes to time, there’s a lot of broken code out there.

Finally, one of the most insidious problems brought about
by time occurs in the context of concurrency and synchro-
nized access issues. It would take an entire book to cover de-
signing, implementing, and debugging multi-threaded, con-
current programs, so we won’t take the time now to go into
details, except to point out that most code you write in Java
will be run in a multi-threaded environment.

So ask yourself, what will happen if multiple threads use this
same object at the same time? Are there global or instance-
level data or methods that need to be synchronized? How
about external access to files or hardware? Be sure to add
the synchronized keyword to any data element or method
that needs it, and try firing off multiple threads as part of
your test.1

5.8 Try It Yourself

Now that we’ve covered the Right-BICEP and CORRECT way
to come up with tests, it’s your turn to try.

For each of the following examples and scenarios, write down
as many possible unit tests as you can think of.

Exercises

1. A simple stack class. Push String objects onto the stack, Answer
on 137and pop them off according to normal stack semantics. This

class provides the following methods:

public interface StackExercise {
/**

* Return and remove the most recent item from
* the top of the stack.
* Throws StackEmptyException
* if the stack is empty
*/

public String pop() throws StackEmptyException;

1JUnit as shipped has some issues with multi-threaded test cases, but
there are various fixes available on the net.

Prepared exclusively for Francilene Procopio Garcia

TRY IT YOURSELF 60

/**
* Add an item to the top of the stack.
*/

public void push(String item);

/**
* Return but do not remove the most recent
* item from the top of the stack.
* Throws StackEmptyException
* if the stack is empty
*/

public String top() throws StackEmptyException;

/**
* Returns true if the stack is empty.
*/

public boolean isEmpty();

} St
a

c
kE

xe
rc

ise
.ja

va

Here are some hints to get you started: what is likely to break?
How should the stack behave when it is first initialized? After
it’s been used for a while? Does it really do what it claims to
do?

2. A shopping cart. This class lets you add, delete, and count Answer
on 138the items in a shopping cart.

What sort of boundary conditions might come up? Are there
any implicit restrictions on what you can delete? Are there any
interesting issues if the cart is empty?

public interface ShoppingCart {
/**
* Add this many of this item to the
* shopping cart.
*/

public void addItems(Item anItem, int quantity)
throws NegativeCountException;

/**
* Delete this many of this item from the
* shopping cart
*/

public void deleteItems(Item anItem,
int quantity)

throws NegativeCountException,
NoSuchItemException;

/**
* Count of all items in the cart
* (that is, all items x qty each)
*/

public int itemCount();

/**
* Return Iterator of all items
* (see Java Collection’s doc)
*/

public Iterator iterator();

}

Prepared exclusively for Francilene Procopio Garcia

TRY IT YOURSELF 61

3. A fax scheduler. This code will send faxes from a specified file Answer
on 139name to a U.S. phone number. There is a validation require-

ment; a U.S. phone number with area code must be of the form
xnn-nnn-nnnn, where x must be a digit in the range [2..9] and
n can be [0..9]. The following blocks are reserved and are not
currently valid area codes: x11, x9n, 37n, 96n.

The method’s signature is:

/**
* Send the named file as a fax to the
* given phone number.
*/
public boolean sendFax(String phone,

String filename)
throws MissingOrBadFileException,

PhoneFormatException,
PhoneAreaCodeException;

Given these requirements, what tests for boundary conditions
can you think of?

4. An automatic sewing machine that does embroidery. The Answer
on 140class that controls it takes a few basic commands. The co-

ordinates (0,0) represent the lower-left corner of the machine.
x and y increase as you move toward the upper-right corner,
whose coordinates are x = getTableSize().width - 1 and y
= getTableSize().height - 1.

Coordinates are specified in fractions of centimeters.

public void moveTo(float x, float y);
public void sewTo(float x, float y);
public void setWorkpieceSize(float width,

float height);
public Size getWorkpieceSize();
public Size getTableSize();

There are some real-world constraints that might be interest-
ing: you can’t sew thin air, of course, and you can’t sew a
workpiece bigger than the machine.

Given these requirements, what boundary conditions can you
think of?

5. Audio/Video Editing Transport. A class that provides meth- Answer
on 141ods to control a VCR or tape deck. There’s the notion of a

“current position” that lies somewhere between the beginning
of tape (BOT) and the end of tape (EOT).

You can ask for the current position and move from there to
another given position. Fast-forward moves from current posi-

Prepared exclusively for Francilene Procopio Garcia

TRY IT YOURSELF 62

tion toward EOT by some amount. Rewind moves from current
position toward BOT by some amount.

When tapes are first loaded, they are positioned at BOT auto-
matically.

public interface AVTransport {
/**
* Move the current position ahead by this many
* seconds. Fast-forwarding past end-of-tape
* leaves the position at end-of-tape
*/

public void fastForward(float seconds);

/**
* Move the current position backwards by this
* many seconds. Rewinding past zero leaves
* the position at zero
*/

public void rewind(float seconds);

/**
* Return current time position in seconds
*/

public float currentTimePosition();

/**
* Mark the current time position with this label
*/

public void markTimePosition(String name);

/**
* Change the current position to the one
* associated with the marked name
*/

public void gotoMark(String name);

} A
V

Tr
a

ns
p

o
rt

.ja
va

6. Audio/Video Editing Transport, Release 2.0. As above, but Answer
on 142now you can position in seconds, minutes, or frames (there are

exactly 30 frames per second in this example), and you can
move relative to the beginning or the end.

Prepared exclusively for Francilene Procopio Garcia

Chapter 6

Using Mock Objects

The objective of unit testing is to exercise just one method
at a time, but what happens when that method depends on
other things—hard-to-control things such as the network, or
a database, or even a servlet engine?

What if your code depends on other parts of the system—
maybe even many other parts of the system? If you’re not
careful, you might find yourself writing tests that end up ini-
tializing nearly every system component just to give the tests
enough context in which to run. Not only is this time consum-
ing, it also introduces a ridiculous amount of coupling into the
testing process: someone goes and changes an interface or a
database table, and suddenly the setup code for your poor
little unit test dies mysteriously. Even the best-intentioned
developers will become discouraged after this happens a few
times, and eventually may abandon all testing. But there are
techniques we can use to help.

In movie and television production, crews will often use stand-
ins or doubles for the real actors. In particular, while the
crews are setting up the lights and camera angles, they’ll use
lighting doubles: inexpensive, unimportant people who are
about the same height and complexion as the very expensive,
important actors who remain safely lounging in their luxuri-
ous trailers.

The crew then tests their setup with the lighting doubles,
measuring the distance from the camera to the stand-in’s

SIMPLE STUBS 64

nose, adjusting the lighting until there are no unwanted shad-
ows, and so on, while the obedient stand-in just stands there
and doesn’t whine or complain about “lacking motivation” for
their character in this scene.

So what we’re going to do in unit testing is similar to the use
of lighting doubles in the movies: we’ll use a cheap stand-in
that is kind of close to the real thing, at least superficially,
but that will be easier to work with for our purposes.

6.1 Simple Stubs

What we need to do is to stub out all those uncooperative
parts of the rest of the real world and replace each of them
with a more complicit ally—our own version of a “lighting dou-
ble.” For instance, perhaps we don’t want to test against the
real database, or with the real, current, wall-clock time. Let’s
look at a simple example.

Suppose throughout your code you call your own getTime()

method to return the current time. It might be defined to look
something like this:

public long getTime() {
return System.currentTimeMillis();

}

(In general, we usually suggest wrapping calls to facilities out-
side the scope of the application to better encapsulate them—
and this is a good example.) Since the concept of current time
is wrapped in a method of your own writing, you can easily
change it to make debugging a little easier:

public long getTime() {
if (debug) {
return debug_cur_time;

} else {
return System.currentTimeMillis();

}
}

You might then have other debug routines to manipulate the
system’s idea of “current time” to cause events to happen that
you’d have to wait around for otherwise.

This is one way of stubbing out the real functionality, but
it’s messy. First of all, it only works if the code consistently

Prepared exclusively for Francilene Procopio Garcia

MOCK OBJECTS 65

calls your own getTime() and does not call the Java method
System.currentTimeMillis() directly. What we need is
a slightly cleaner—and more object-oriented—way to accom-
plish the same thing.

6.2 Mock Objects

Fortunately, there’s a testing pattern that can help: mock ob-
jects. A mock object is simply a debug replacement for a real-
world object. There are a number of situations that come up
where mock objects can help us. Tim Mackinnon [MFC01]
offers the following list:

• The real object has nondeterministic behavior (it pro-
duces unpredictable results; as in a stock-market quote
feed.)

• The real object is difficult to set up.

• The real object has behavior that is hard to trigger (for
example, a network error).

• The real object is slow.

• The real object has (or is) a user interface.

• The test needs to ask the real object about how it was
used (for example, a test might need to check to see that
a callback function was actually called).

• The real object does not yet exist (a common problem
when interfacing with other teams or new hardware sys-
tems).

Using mock objects, we can get around all of these problems.
The three key steps to using mock objects for testing are:

1. Use an interface to describe the object

2. Implement the interface for production code

3. Implement the interface in a mock object for testing

The code under test only ever refers to the object by it’s in-
terface, so it can remain blissfully ignorant as to whether it
is using the real object or the mock. Let’s take another look
at our time example. We’ll start by creating an interface for

Prepared exclusively for Francilene Procopio Garcia

MOCK OBJECTS 66

a number of real-world environmental things, one of which is
the current time:

public interface Environmental {
public long getTime();
// Other methods omitted...

} En
vi

ro
nm

e
nt

a
l.j

a
va

Next, we create the real implementation:

public class SystemEnvironment implements Environmental {
public long getTime() {
return System.currentTimeMillis();

}
// other methods ...

} Sy
st

e
m

En
vi

ro
nm

e
nt

.ja
va

And finally, the mock implementation:

public class MockSystemEnvironment

implements Environmental {
public long getTime() {
return current_time;

}
public void setTime(long aTime) {
current_time = aTime;

}
private long current_time;
// ...

} M
o

c
kS

ys
te

m
En

vi
ro

nm
e

nt
.ja

va

Note that in the mock implementation, we’ve added the ad-
ditional method setTime() (and the corresponding private
variable) that allows you to control the mock object.

Now suppose we’ve written a new method that depends on
the getTime() method. Some details are omitted, but the
part we’re interested in looks like this:

Line 1 import java.util.Calendar;
-
- public class Checker {
-
5 public Checker(Environmental anEnv) {
- env = anEnv;
- }
-
- /**

10 * After 5 o’clock, remind people to go home
- * by playing a whistle
- */
- public void reminder() {
- Calendar cal = Calendar.getInstance();

15 cal.setTimeInMillis(env.getTime());
- int hour = cal.get(Calendar.HOUR_OF_DAY);
-
- if (hour >= 17) { // 5:00PM

Prepared exclusively for Francilene Procopio Garcia

MOCK OBJECTS 67

- env.playWavFile("quit_whistle.wav");
20 }

-
- }
-
- // ...

25
- private Environmental env;
- }
- C

he
c

ke
r.j

a
va

In the production environment—the real world code that gets
shipped to customers—an object of this class would be initial-
ized by passing in a real SystemEnvironment. The test code,
on the other hand, uses a MockSystemEnvironment.

The code under test that uses env.getTime() doesn’t know
the difference between a test environment and the real envi-
ronment, as they both implement the same interface. You
can now write tests that exploit the mock object by setting the
time to known values and checking for the expected behavior.

In addition to the getTime() call that we’ve shown, the Envi-
ronmental interface also supports a playWavFile() method
call (used on line 19 in Checker.java above). With a bit
of extra support code in our mock object, we can also add
tests to see if the playWavFile() method was called without
having to listen to the computer’s speaker.

public void playWavFile(String filename) {
playedWav = true;

}
public boolean wavWasPlayed() {
return playedWav;

}
public void resetWav() {
playedWav = false;

}
private boolean playedWav = false; M

o
c

kS
ys

te
m

En
vi

ro
nm

e
nt

.ja
va

Putting all of this together, a test using this setup would go
something like this:

Line 1 import junit.framework.*;
- import java.util.Calendar;
-
- public class TestChecker extends TestCase {
5
- public void testQuittingTime() {
-
- MockSystemEnvironment env =
- new MockSystemEnvironment();

10

Prepared exclusively for Francilene Procopio Garcia

MOCK OBJECTS 68

- // Set up a target test time
- Calendar cal = Calendar.getInstance();
- cal.set(Calendar.YEAR, 2004);
- cal.set(Calendar.MONTH, 10);

15 cal.set(Calendar.DAY_OF_MONTH, 1);
- cal.set(Calendar.HOUR_OF_DAY, 16);
- cal.set(Calendar.MINUTE, 55);
- long t1 = cal.getTimeInMillis();
-

20 env.setTime(t1);
-
- Checker checker = new Checker(env);
-
- // Run the checker

25 checker.reminder();
-
- // Nothing should have been played yet
- assertFalse(env.wavWasPlayed());
-

30 // Advance the time by 5 minutes
- t1 += (5 * 60 * 1000);
- env.setTime(t1);
-
- // Now run the checker

35 checker.reminder();
-
- // Should have played now
- assertTrue(env.wavWasPlayed());
-

40 // Reset the flag so we can try again
- env.resetWav();
-
- // Advance the time by 2 hours and check
- t1 += 2 * 60 * 60 * 1000;

45 env.setTime(t1);
-
- checker.reminder();
- assertTrue(env.wavWasPlayed());
- }

50 } Te
st

C
he

c
ke

r.j
a

va
The code creates a mock version of the application environ-
ment at line 9. Lines 12 though 20 set up the fake time that
we’ll use, and then sets that in the mock environment object.

By line 25 we can run the reminder() call, which will (un-
wittingly) use the mock environment. The assert on line 28
makes sure that the .wav file has not been played yet, as it
is not yet quitting time in the mock object environment. But
we’ll fix that in short order; line 32 puts the mock time ex-
actly equal to quitting time (a good boundary condition, by
the way). The assert on line 38 makes sure that the .wav

file did play this time around.

Finally, we’ll reset the mock environment’s .wav file flag at
line 41 and test a time two hours later. Notice how easy it is
to alter and check conditions in the mock environment—you
don’t have to bend over and listen to the PC’s speaker, or reset

Prepared exclusively for Francilene Procopio Garcia

TESTING A SERVLET 69

the clock, or pull wires, or anything like that.

Because we’ve got an established interface to all system func-
tions, people will (hopefully) be more likely to use it instead of
calling methods such as System.currentTimeMillis() di-
rectly, and we now have control over the behavior behind that
interface.

And that’s all there is to mock objects: faking out parts of the
real world so you can concentrate on testing your own code
easily. Let’s look at a more complicated example next.

6.3 Testing a Servlet

Servlets are chunks of code that a Web server manages: re-
quests to certain URLs are forwarded to a servlet container
(or manager) such as Jakarta Tomcat,1 which in turn invokes
the servlet code. The servlet then builds a response that it
sends back to the requesting browser. From the end-user’s
perspective, it’s just like accessing any other page.

The listing below shows part of the source of a trivial servlet
that converts temperatures from Fahrenheit to Celsius. Let’s
step quickly through its operation.

Line 1 public void doGet(HttpServletRequest req,
- HttpServletResponse res)
- throws ServletException, IOException
- {
5 String str_f = req.getParameter("Fahrenheit");
-
- res.setContentType("text/html");
- PrintWriter out = res.getWriter();
-

10 try {
- int temp_f = Integer.parseInt(str_f);
- double temp_c = (temp_f - 32)*5.0 /9.0;
- out.println("Fahrenheit: " + temp_f +
- ", Celsius: " + temp_c);

15 } catch (NumberFormatException e) {
- out.println("Invalid temperature: " + str_f);
- }
- } Te

m
p

e
ra

tu
re

Se
rv

le
t.

ja
va

When the servlet container receives the request, it automati-
cally invokes the servlet method doGet(), passing in two pa-
rameters: a request and a response.

1http://jakarta.apache.org/tomcat

Prepared exclusively for Francilene Procopio Garcia

TESTING A SERVLET 70

The request parameter contains information about the re-
quest. The servlet uses this parameter to get the contents
of the field Fahrenheit. It then converts the value to Celsius
before writing the result back to the user. (The response ob-
ject contains a factory method that returns a PrintWriter

object, which does the actual writing.) If an error occurs con-
verting the number (perhaps the user typed “boo!” instead of
a temperature into the form’s temperature field), we catch the
exception and report the error in the response.

This snippet of code runs in a fairly complex environment: it
needs a Web server and a servlet container, and it requires
a user sitting at a browser to interact with it. This is hardly
the basis of a good automated unit test. Mock objects to the
rescue!

The interface to the servlet code is pretty simple: as we men-
tioned before, it receives two parameters, a request and a re-
sponse. The request object must be able to provide a rea-
sonable string when its getParameter() method is called,
and the response object must support setContentType()

and getWriter().

Both HttpServletRequest and HttpServletResponse are
interfaces, so all we have to do is whip up a couple of classes
that implement the interfaces and we’re set. Unfortunately,
when we look at the interface, we discover that we’ll need to
implement dozens of methods just to get the code to compile—
it’s not as easy as the slightly contrived time/wav-file example
above. Fortunately, other folks have already done the hard
work for us.

Mackinnon, Freeman, and Craig [MFC01] introduced the for-
malization of mock objects and have also developed the code
for a mock object framework for Java programmers.2 In ad-
dition to the basic framework code that makes it easier to
develop mock objects, the mock objects package comes with
a number of application-level mock objects.

You’ll find mock output objects (including PrintStream, and
PrintWriter), objects that mock the java.sql library, and

2http://www.mockobjects.com

Prepared exclusively for Francilene Procopio Garcia

TESTING A SERVLET 71

classes for testing in a servlet environment. In particular, it
provides mocked-up versions of HttpServletRequest and
HttpServletResponse, which by an incredible coincidence
are the types of the parameters of the method we want to test.

We can use their package to rig the tests, much as we faked
out setting the time in the earlier example:

Line 1 import junit.framework.*;
- import com.mockobjects.servlet.*;
-
- public class TestTempServlet extends TestCase {
5
- public void test_bad_parameter() throws Exception {
- TemperatureServlet s = new TemperatureServlet();
- MockHttpServletRequest request =
- new MockHttpServletRequest();

10 MockHttpServletResponse response =
- new MockHttpServletResponse();
-
- request.setupAddParameter("Fahrenheit", "boo!");
- response.setExpectedContentType("text/html");

15 s.doGet(request,response);
- response.verify();
- assertEquals("Invalid temperature: boo!\n",
- response.getOutputStreamContents());
- }

20
- public void test_boil() throws Exception {
- TemperatureServlet s = new TemperatureServlet();
- MockHttpServletRequest request =
- new MockHttpServletRequest();

25 MockHttpServletResponse response =
- new MockHttpServletResponse();
-
- request.setupAddParameter("Fahrenheit", "212");
- response.setExpectedContentType("text/html");

30 s.doGet(request,response);
- response.verify();
- assertEquals("Fahrenheit: 212, Celsius: 100.0\n",
- response.getOutputStreamContents());
- }

35
- } Te

st
Te

m
p

Se
rv

le
t.

ja
va

We use a MockHttpServletRequest object to set up the con-
text in which to run the test. On line 13 of the code, we
set the parameter Fahrenheit to the value “boo!” in the re-
quest object. This is equivalent to the user entering “boo!” in
the corresponding form field in the browser; our mock object
eliminates the need for human input when the test runs.

On line 14, we tell the response object that we expect the
method under test to set the response’s content type to be
text/html. Then, on lines 16 and 31, after the method under

Prepared exclusively for Francilene Procopio Garcia

EASY MOCK OBJECTS 72

test has run, we tell the response object to verify that this
happened. Here, the mock object eliminates the need for a
human to check the result visually. This example shows a
pretty trivial verification; in reality, mock objects can verify
that fairly complex sequences of actions have been performed,
and they can check that methods have been called the correct
number of times.

Mock objects can also record the data that was given to them.
In our case, the response object receives the text that our
servlet wants to display on the browser. We can query this
value (lines 18 and 33) to check that we’re returning the text
we were expecting.

6.4 Easy Mock Objects

If the thought of writing all these mock object classes is in-
timidating, you might want to take a look at Easy-Mock,3 a
convenient Java API for creating mock objects dynamically.

Easy-Mock uses a very interesting method to specify which
method calls to a mocked-out interface are allowed and what
their return values should be: you specify which method calls
should exist by calling them! The mock control object lets you
specify a record mode and a replay mode for the corresponding
mock object. While the object is in record mode, you go ahead
and call the methods you are interested in and set the desired
return values. Once that’s finished, you switch over to replay
mode. Now when you call those methods, you’ll get the return
values you specified.

Any remaining methods will throw a runtime exception if they
are called—but the nice part is that you don’t have to define
any of that.

For example, suppose we have an interface for a Jukebox
hardware controller that has over a dozen methods, but we’re
only interested in one for this demonstration. (Note that we’re
not really testing anything here, but are just showing how
you set up and use an EasyMock object. Obviously, the whole

3http://www.easymock.org

Prepared exclusively for Francilene Procopio Garcia

EASY MOCK OBJECTS 73

point of using a mock object is to allow you to test something
that depends on the object you’re mocking up.)

Line 1 import junit.framework.*;
- import org.easymock.MockControl;
-
- public class TestJukebox extends TestCase {
5
- private Jukebox mockJukebox;
- private MockControl mockJukebox_control;
-
- protected void setUp() {

10 // Create a control handle to the Mock object
- mockJukebox_control =
- MockControl.createControl(Jukebox.class);
-
- // And create the Mock object itself

15 mockJukebox =
- (Jukebox) mockJukebox_control.getMock();
- }
-
- public void testEasyMockDemo() {

20
- // Set up the mock object by calling
- // methods you want to exist
- mockJukebox.getCurrentSong();
- mockJukebox_control.setReturnValue(

25 "King Crimson -- Epitaph");
-
- // You don’t have to worry about the other dozen
- // methods defined in Jukebox...
-

30 // Switch from record to playback
- mockJukebox_control.replay();
-
- // Now it’s ready to use:
- assertEquals("King Crimson -- Epitaph",

35 mockJukebox.getCurrentSong());
- }
-
- } Te

st
Ju

ke
b

o
x.

ja
va

The code in the setUp() method for this test creates an empty
mock object for the Jukebox interface, along with its control.
The control starts off in record mode, so the call on line 23
will create a mock stub for the getCurrentSong() call that
we want to use. The next line sets the return value for that
method—that’s all it takes.

Now we switch the mock object from record to replay mode
(line 31), and finally the call on line 35 returns the value we
just set up.

There are many other options; you can specify how many
times a method should return a particular value, you can ver-
ify that methods which return void were actually called, and
so on.

Prepared exclusively for Francilene Procopio Garcia

EASY MOCK OBJECTS 74

There are also alternatives to mock objects, particularly in
the servlet environment. The Jakarta Cactus system4 is a
heavier-weight framework for testing server-side components.
Compared to the mock objects approach, Cactus runs your
tests in the actual target environment and tends to produce
less fine-grained tests. Depending on your needs, this might
or might not be a good thing.

Exercises

7. Come up with a simple mock object (by hand) for an MP3 player Answer
on 144control panel with the following methods:

import java.util.ArrayList;

public interface Mp3Player {
/**
* Begin playing the filename at the top of the
* play list, or do nothing if playlist
* is empty.
*/

public void play();

/**
* Pause playing. Play will resume at this spot.
*/

public void pause();

/**
* Stop playing. The current song remains at the
* top of the playlist, but rewinds to the
* beginning of the song.
*/

public void stop();

/** Returns the number of seconds into
* the current song.
*/

public double currentPosition();

/**
* Returns the currently playing file name.
*/

public String currentSong();

/**
* Advance to the next song in the playlist
* and begin playing it.
*/

public void next();

/**
* Go back to the previous song in the playlist
* and begin playing it.
*/

public void prev();

4http://jakarta.apache.org/cactus

Prepared exclusively for Francilene Procopio Garcia

EASY MOCK OBJECTS 75

/**
* Returns true if a song is currently
* being played.
*/

public boolean isPlaying();

/**
* Load filenames into the playlist.
*/

public void loadSongs(ArrayList names);

} M
p

3P
la

ye
r.j

a
va

It should pass the following unit test:

import junit.framework.*;
import java.util.ArrayList;

public class TestMp3Player extends TestCase {
protected Mp3Player mp3;
protected ArrayList list = new ArrayList();

public void setUp() {
mp3 = new MockMp3Player();

list = new ArrayList();
list.add("Bill Chase -- Open Up Wide");
list.add("Jethro Tull -- Locomotive Breath");
list.add("The Boomtown Rats -- Monday");
list.add("Carl Orff -- O Fortuna");

}
public void testPlay() {

mp3.loadSongs(list);
assertFalse(mp3.isPlaying());
mp3.play();
assertTrue(mp3.isPlaying());
assertTrue(mp3.currentPosition() != 0.0);
mp3.pause();
assertTrue(mp3.currentPosition() != 0.0);
mp3.stop();
assertEquals(mp3.currentPosition(), 0.0, 0.1);

}
public void testPlayNoList() {

// Don’t set the list up
assertFalse(mp3.isPlaying());
mp3.play();
assertFalse(mp3.isPlaying());
assertEquals(mp3.currentPosition(), 0.0, 0.1);
mp3.pause();
assertEquals(mp3.currentPosition(), 0.0, 0.1);
assertFalse(mp3.isPlaying());
mp3.stop();
assertEquals(mp3.currentPosition(), 0.0, 0.1);
assertFalse(mp3.isPlaying());

}
public void testAdvance() {

mp3.loadSongs(list);

mp3.play();

assertTrue(mp3.isPlaying());

Prepared exclusively for Francilene Procopio Garcia

EASY MOCK OBJECTS 76

mp3.prev();
assertEquals(mp3.currentSong(), list.get(0));
assertTrue(mp3.isPlaying());

mp3.next();
assertEquals(mp3.currentSong(), list.get(1));
mp3.next();
assertEquals(mp3.currentSong(), list.get(2));
mp3.prev();

assertEquals(mp3.currentSong(), list.get(1));
mp3.next();
assertEquals(mp3.currentSong(), list.get(2));
mp3.next();
assertEquals(mp3.currentSong(), list.get(3));
mp3.next();
assertEquals(mp3.currentSong(), list.get(3));
assertTrue(mp3.isPlaying());

}
} Te

st
M

p
3P

la
ye

r.j
a

va

Prepared exclusively for Francilene Procopio Garcia

Chapter 7

Properties of
Good Tests

Unit tests are very powerful magic, and if used badly can
cause an enormous amount of damage to a project by wast-
ing your time. If unit tests aren’t written and implemented
properly, you can easily waste so much time maintaining and
debugging the tests themselves that the production code—and
the whole project—suffers.

We can’t let that happen; remember, the whole reason you’re
doing unit testing in the first place is to make your life easier!
Fortunately, there are only a few simple guidelines that you
need to follow to keep trouble from brewing on your project.

Good tests have the following properties, which makes them
A-TRIP:

• Automatic

• Thorough

• Repeatable

• Independent

• Professional

Let’s look at what each of these words means to us.

AUTOMATIC 78

7.1 Automatic

Unit tests need to be run automatically. We mean “automat- A -TRIP

ically” in at least two ways: invoking the tests and checking
the results.

It must be really easy for you to invoke one or more unit tests,
as you will be doing it all day long, day in and day out. So it
really can’t be any more complicated than pressing one button
in the IDE or typing in one command at the prompt in order
to run the tests you want. Some IDEs can even be set up to
run the unit tests continually in the background.

It’s important to maintain this environment: don’t introduce
a test that breaks the automatic model by requiring manual
steps. Whatever the test requires (database, network connec-
tions, etc.), make these an automatic part of the test itself.
Mock objects, as described in Chapter 6, can help insulate
you from changes in the real environment.

But you’re not the only one running tests. Somewhere a ma-
chine should be running all of the unit tests for all checked-in
code continuously. This automatic, unattended check acts as
a “back stop”; a safety mechanism to ensure that whatever
is checked in hasn’t broken any tests, anywhere. In an ideal
world, this wouldn’t be necessary as you could count on every
individual developer to run all the necessary tests themselves.

But this isn’t an ideal world. Maybe an individual didn’t run
some necessary test in a remote corner of the project. Perhaps
they have some code on their own machine that makes it all
work—but they haven’t checked that code in, so even though
the tests work on their own machine, those same tests fail
everywhere else.

You may want to investigate systems such as Cruise Con-
trol1, AntHill2, or Tinderbox.3 These are freely available, open
source products that manage continuous building and test-
ing. We describe setting up a continuous-build and testing
environment in Volume III of the Starter Kit [Pro04].

1http://cruisecontrol.sourceforge.net
2http://www.cs.unibo.it/projects/anthill
3http://www.mozilla.org/tinderbox.html

Prepared exclusively for Francilene Procopio Garcia

THOROUGH 79

Finally, by “automatic” we mean that the test must determine
for itself whether it passed or failed. Having a person (you
or some other hapless victim) read through the test output
and determine whether the code is working or not is a recipe
for project failure. It’s an important feature of consistent re-
gression to have the tests check for themselves. We humans
aren’t very good as those repetitive tasks, and besides we’ve
got more important things to do—remember the project?

This idea of having the tests run by themselves and check
themselves is critical, because it means that you don’t have to
think about it—it just happens as part of the project. Testing
can then fulfill its role as a major component of our project’s
safety net.4 It’s there to catch you when you fall, but it’s not
in the way. You’ll need all of your concentration as you cross
today’s high-wire.

7.2 Thorough

Good unit tests are thorough; they test everything that’s likely A- T RIP

to break. But just how thorough? At one extreme, you can
aim to test every line of code, every possible branch the code
might take, every exception it throws, and so on. At the other
extreme, you test just the most likely candidates—boundary
conditions, missing and malformed data, and so on. It’s a
question of judgment, based on the needs of your project.

If you want to aim for more complete coverage, then you may
want to invest in code coverage tools to help. (See, for in-
stance, the freely available tools “nounit”5 and “quilt.”6 Com-
mercial tools, such as Clover, are available as well.) These
tools can help you determine how much of the code under
test is actually being exercised.

It’s important to realize that bugs are not evenly distributed
throughout the source code. Instead, they tend to clump
together in problematic areas (for an interesting story along
these lines, see the sidebar on the following page).

4Version control and automation are the other two major components of
the “safety net.”

5http://nounit.sourceforge.net
6http://quilt.sourceforge.net

Prepared exclusively for Francilene Procopio Garcia

THOROUGH 80

Reported Bugs vs. Unit Test Coverage

We had a client recently that didn’t quite believe in
the power of unit tests. A few members of the team
were very good and disciplined at writing unit tests for
their own modules, many were somewhat sporadic
about it, and a few refused to be bothered with unit
tests at all.

As part of the hourly build process, we whipped up
a simple Ruby script that performed a quick-and-dirty
analysis of test coverage: it tallied up the ratio of test
code asserts to production code methods for each
module. Well-tested methods may have 3, 4, or more
asserts each; untested methods will have none at all.
This analysis ran with every build and produced a bar-
graph, ranking the most-tested modules at the top
and the untested modules at the bottom.

After a few weeks of gathering figures, we showed
the bargraph to the project manager, without initial
explanation. He was very surprised to see all of the
“problem modules” lumped together at the bottom—
he thought we had somehow produced this graph
based on bug reports from QA and customer sup-
port. Indeed, the modules at the top of the graph
(well tested) were nearly unknown to him; very few, if
any, problems had ever been reported against them.
But the clump of modules at the bottom (that had
no unit tests) were very well known to him, the sup-
port managers, and the local drugstore which had
resorted to stocking extra-large supplies of antacid.

The results were very nearly linear: the more unit-
tested the code, the fewer problems.

This phenomenon leads to the well-known battle cry of “don’t
patch it, rewrite it.” Often, it can be much cheaper and less
painful to throw out a piece of code that has a clump of bugs
and rewrite it from scratch. And of course, it’s much safer to
rewrite code from scratch now: you’ll have a set of unit tests
that can confirm the new code works as it should.

Prepared exclusively for Francilene Procopio Garcia

REPEATABLE 81

7.3 Repeatable

Just as every test should be independent from every other A-T R IP

test, they must be independent of the environment as well.
The goal remains that every test should be able to run over
and over again, in any order, and produce the same results.
This means that tests cannot rely on anything in the external
environment that isn’t under your direct control.

Use mock objects as necessary to isolate the item under test
and keep it independent from the environment. If you are
forced to use some element from the real world (a database,
perhaps), make sure that you won’t get interference from any
other developer. Each developer needs their own “sandbox”
to play in, whether that’s their own database instance within
Oracle, or their own webserver on some non-standard port.

Without repeatability, you might be in for some surprises at
the worst possible moments. What’s worse, these sort of sur-
prises are usually bogus—it’s not really a bug, it’s just a prob-
lem with the test. You can’t afford to waste time chasing down
phantom problems.

Each test should produce the same results every time. If it
doesn’t, then that should tell you that there’s a real bug in
the code.

7.4 Independent

Tests need to be kept neat and tidy, which means keeping A-TR I P

them tightly focused, and independent from the environment
and each other (remember, other developers may be running
these same tests at the same time).

When writing tests, make sure that you are only testing one
thing at a time.

Now that doesn’t mean that you use only one assert in a test,
but that one test method should concentrate on a single pro-
duction method, or a small set of production methods that,
together, provide some feature.

Prepared exclusively for Francilene Procopio Garcia

PROFESSIONAL 82

Sometimes an entire test method might only test one small as-
pect of a complex production method—you may need multiple
test methods to exercise the one production method fully.

Ideally, you’d like to be able to have a traceable correspon-
dence between potential bugs and test code. In other words,
when a test fails, it should be obvious where in the code the
underlying bug exists.

Independent also means that no test relies on any other test;
you should be able to run any individual test at any time, and
in any order. You don’t want to have to rely on any other test
having run first.

We’ve shown mechanisms to help you do this: the per-test
setup and teardown methods and the per-class setup and
teardown methods. Use these methods to ensure that every
test gets a fresh start—and doesn’t impact any test that might
run next.

Remember, you aren’t guaranteed that JUnit tests will run in
any particular order, and as you start combining tests and
suites in ever-increasing numbers, you really can’t afford to
carry ordering dependencies along with you.

John Donne may have been right about people, but not about
unit tests: every test should be an island.

7.5 Professional

The code you write for a unit test is real; some may argue A-TRI P

it’s even more real than the code you ship to customers. This
means that it must be written and maintained to the same
professional standards as your production code. All the usual
rules of good design—maintaining encapsulation, honoring
the DRY principle, lowering coupling, etc.—must be followed
in test code just as in production code.

It’s easy to fall into the trap of writing very linear test code;
that is, code that just plods along doing the same thing over
and over again, using the same lines of code over and over
again, with nary a function or object in sight. That’s a bad
thing. Test code must be written in the same manner as real
code. That means you need to pull out common, repeated bits

Prepared exclusively for Francilene Procopio Garcia

PROFESSIONAL 83

of code and put that functionality in a method instead, so it
can be called from several different places.

You may find you accumulate several related test methods
that should be encapsulated in a class. Don’t fight it! Go
ahead and create a new class, even if it’s only ever used for
testing. That’s not only okay, it’s encouraged: test code is real
code. In some cases, you may even need to create a larger
framework, or create a data-driven testing facility (remember
the simple file reader for TestLargest on page 39?).

Don’t waste time testing aspects that won’t help you. Remem-
ber, you don’t want to create tests just for the sake of creating
tests. Test code must be thorough in that it must test ev-
erything interesting about a method that is likely to contain
a bug. If it’s not likely to contain a bug, don’t bother testing
it. That means that usually you shouldn’t waste time testing
things like simple accessors:

public Money getBalance() {
return balance;

}

Frankly, there’s just not much here to go wrong that the com-
piler can’t catch. Testing methods such as these is just a
waste of time. However, if the accessor is doing some work
along the way, then suddenly it becomes interesting—and we
will want to test it:

public Money getBalance() {
return posted.getBalance() -

unposted.getDebits() +
unposted.getCredits();

}

That’s probably worth testing.

Finally, expect that there will be at least as much test code
written as there will be production code. Yup, you read that
right. If you’ve got 20,000 lines of code in your product, then
it would be reasonable to expect that there would be 20,000
lines or more of unit test code to exercise it. That’s a lot of
test code, which is partly why it needs to be kept neat and
tidy, well designed and well-factored, just as professional as
the production code.

Prepared exclusively for Francilene Procopio Garcia

TESTING THE TESTS 84

7.6 Testing the Tests

There is one major conceptual weakness in our plans so far.
Testing code to make sure it works is a great idea, but you
have to write code to perform the tests. What happens when
there are bugs in our test code? Does that mean you have to
write test code to test the tests that test the code??? Where
will it all end?

Fortunately, you don’t need to go to that extreme. There are
two things you can do to help ensure that the test code is
correct:

• Improve tests when fixing bugs

• Prove tests by introducing bugs

How to Fix a Bug

The steps you take when fixing a bug are very important to
unit testing. Many times, an existing test will expose a bug in
the code, and you can then simply fix the code and watch the
vigilant test pass.

When a bug is found “in the wild” and reported back, that
means there’s a hole in the net—a missing test. This is your
opportunity to close the hole, and make sure that this bug
never escapes again. All it takes is four simple steps:

1. Identify the bug.

2. Write a test that fails, to prove the bug exists.

3. Fix the code such that the test now passes.

4. Verify that all tests still pass (i.e., you didn’t break any-
thing else as a result of the fix).

This simple mechanism of applying real-world feedback to
help improve the tests is very effective. Over time, you can
expect that your test coverage will steadily increase, and the
number of bugs that escape into the wild from existing code
will decrease.

Of course, as you write new code, you’ll undoubtedly intro-
duce new bugs, and new classes of bugs, that aren’t being

Prepared exclusively for Francilene Procopio Garcia

TESTING THE TESTS 85

public void testAdd() {
// Create a new account object
Account acct = new Account();

// Populate with our test person
acct.setPerson(TEST_PERSON_1);

// Add it to the database
DatabaseHandler.add(acct);

// Should find it
assertTrue(DatabaseHandler.search(ACCOUNT,

TEST_PERSON_1));

}

Figure 7.1: Test Adding a Person to a Database

caught by the tests. But when fixing any bug, ask yourself
the key question:

Could this same kind of problem happen any-
where else?

Then it doesn’t matter whether you’re fixing a bug in an older
feature or a new feature; either way, apply what you’ve just
learned to the whole project. Encode your new-found knowl-
edge in all the unit tests that are appropriate, and you’ve done
more than just fix one bug. You’ve caught a whole class of
bugs.

Spring the Trap

If you’re not sure that a test is written correctly, the easiest
thing to do is to “spring the trap”: cause the production code
to exhibit the very bug you’re trying to detect, and verify that
the test fails as expected.

For instance, suppose you’ve got a test method that adds a
customer account to the database and then tries to find it,
something like the code in Figure 7.1. Perhaps you’re not cer-
tain that the “finding” part is really working or not—it might
be reporting success even if the record wasn’t added correctly.

So maybe you’ll go into the add() method for Database-

Handler and short-circuit it: just return instead of actually
adding the record to the database. Now you should see the
assertion fail, because the record has not been added.

Prepared exclusively for Francilene Procopio Garcia

TESTING THE TESTS 86

But wait, you may cry, what about a leftover record from a
previous test run? Won’t that be in the database? No, it won’t,
for several reasons:

• You’re not really testing against a live database. The real
guts of the DatabaseHandler above are probably in a
set of mock objects, whose data is not held persistently
in between runs.

• Tests are independent. All tests can be run in any or-
der, and do not depend on each other, so even if a real
database is part of this test, the setup and tear-down
must ensure that you get a “clean sandbox” to play in.
The attempt above to spring the trap can help prove that
this is true.

Now the Extreme Programming folks claim that their disci-
plined practice of test-first development avoids these issues.
In test-first development, you only ever write code to fix a fail-
ing test. As soon as the test passes, then you know that the
code you just added fixed it. This puts you in the position
where you always know with absolute certainty that the code
you introduced fixes the failing test that caused you to write
the code in the first place.

But there’s many a slip ’twixt the cup and the lip, and while
test-first development does improve the situation dramatical-
ly, there will still be opportunities to be mislead by coinci-
dences. For those occasions, you can satisfy any lingering
doubts by deliberately “springing the trap” to make sure that
all is as you expect.

Finally, remember to write tests that are A-TRIP (Automatic,
Thorough, Repeatable, Independent, Professional); keep add-
ing to your unit tests as new bugs and types of bugs are dis-
covered; and check to make sure your tests really do find the
bugs they target.

Then sit back and watch problems on your project disappear
like magic.

Prepared exclusively for Francilene Procopio Garcia

Chapter 8

Testing on a Project

Up to now we’ve talked about testing as an individual, solitary
exercise. But of course, in the real world you’ll likely have
teammates to work with. You’ll all be unit testing together,
and that brings up a couple of issues.

8.1 Where to Put Test Code

On a small, one-person project, the location of test code and
encapsulation of the production code may not be very impor-
tant, but on larger projects it can become a critical issue.
There are several different ways of structuring your produc-
tion and test code that we’ll look at here.

In general, you don’t want to break any encapsulation for the
sake of testing (or as Mom used to say, “don’t expose your pri-
vates!”). Most of the time, you should be able to test a class
by exercising its public methods. If there is significant func-
tionality that is hidden behind private or protected access,
that might be a warning sign that there’s another class in
there struggling to get out. When push comes to shove, how-
ever, it’s probably better to break encapsulation with working,
tested code than it is to have good encapsulation of untested,
non-working code.

In Java, classes in the same package can have access to each
others’ protected member variables and methods; you can

WHERE TO PUT TEST CODE 88

exploit this feature to allow some non-public access using
some of the schemes that follow.

Same directory

Suppose you are writing a class named:

com.pragprog.wibble.Account

with a corresponding test in:

com.pragprog.wibble.TestAccount

The first and easiest method of structuring test code is to sim-
ply include it right in the same directory alongside the produc-
tion code.
com/

pragprog/

wibble/

Account.java

TestAccount.java

This has the advantage that TestAccount can access pro-
tected member variables and methods of Account. But the
disadvantage is that the test code is lying around, cluttering
up the production code directory. This may or may not be a
problem depending on your IDE/compiler and your method of
creating a release to ship to customers.

Most of the time, it’s enough of a problem that we prefer one
of the other solutions. But for small projects, this might be
sufficient.

Subdirectories

The next option is to create test subdirectories under every
production directory.

com/

pragprog/

wibble/

Account.java

test/

TestAccount.java

Prepared exclusively for Francilene Procopio Garcia

WHERE TO PUT TEST CODE 89

This has the advantage of moving the test code a little bit out
of the way—not too far, but at least not in the same directory
as the production code. The disadvantage is that now the
test code is in a different package: TestAccount is now in
com.pragprog.wibble.test.TestAccount. You won’t be
able to access protected members unless your test code uses
a subclass of the production code that exposes the necessary
members. For instance, suppose the class you want to test
looks like this:

package com.acme;

public class Pool {
protected Date lastCleaned;

public void xxxx xx {
xxx xxx xxxx;

}
...

}

You need to get at that non-public bit of data that tells you
when the pool was last cleaned for testing, but there’s no ac-
cessor for it. (If there were, the pool association would prob-
ably sue us; they don’t like to make that information public.)
So you make a subclass in the test subpackage that exposes
it just for testing.

package com.acme.test;
import com.acme.Pool;

public class PoolForTesting extends Pool {
public Date getLastCleaned() {
return lastCleaned;

}
...

}

You would then use PoolForTesting in the test code instead
of using Pool directly (see Figure 8.1 on the next page). In
fact, you could make this special class private to the test code
(to ensure that we don’t get sued).

Parallel Trees

Another option is to place your Test classes into the same
package as your production code, but in a different source
code tree. The trick is to ensure that the root of both trees
is in the compiler’s CLASSPATH. In this case, both prod and
test should be in the CLASSPATH.

Prepared exclusively for Francilene Procopio Garcia

WHERE TO PUT TEST CODE 90

com.acme.Pool

#getLastCleaned()

com.acme.test.PoolForTesting

+getLastCleaned()

protected
method in
production
code

PRODUCTION CODE

public in test
code

TEST CODE

Figure 8.1: Subclasses Expose Methods for Testing

prod/

com/

pragprog/

wibble/

Account.java

test/

com/

pragprog/

wibble/

TestAccount.java

Now the test code is really out of the way—maybe too far out
of the way to be convenient depending on your setup. But
it certainly isn’t lying around near the production code any-
more, and because the test code is in the same package, it
again enjoys preferential access.

Whatever convention the team decides to adopt, make sure it
does so consistently. You cannot have some of the tests in
the system set up one way, and other tests elsewhere set up
a different way. Pick a style that looks like it will work in your
environment and stick with it for all of the system’s unit tests.

Prepared exclusively for Francilene Procopio Garcia

TEST COURTESY 91

8.2 Test Courtesy

The biggest difference between testing by yourself and testing
with others lies in synchronizing working tests and code.

When working with other members of a team, you will be
using some sort of version control system, such as CVS. (If
you aren’t familiar with version control, or would like some
assistance in getting it set up and working correctly, please
see [TH03].)

In a team environment (and even in a personal environment)
you should make sure that when you check in code (or other-
wise make it available to everyone) that it has complete unit
tests, and that is passes all of them. In fact, every test in the
whole system should continue to pass with your new code.

The rule is very simple: As soon as anyone else can access
your code, all tests everywhere need to pass. Since you should
normally work in fairly close synchronization with the rest of
the team and the version control system, this boils down to
“all tests pass all the time.”

Many teams institute policies to help “remind” developers of
the consequences of breaking the build, or breaking the tests.
These policies might begin by listing potential infractions in-
volving code that you have checked in (or otherwise made
available to other developers):

• Incomplete code (e.g., checking in only one class file but
forgetting to check in other files it may depend upon).

• Code that doesn’t compile.

• Code that compiles, but breaks existing code such that
existing code no longer compiles.

• Code without corresponding unit tests.

• Code with failing unit tests.

• Code that passes its own tests, but causes other tests
elsewhere in the system to fail.

If found guilty of any of these heinous crimes, you may be sen-
tenced to providing donuts for the entire team the next morn-
ing, or beer or soda, or frozen margaritas, or maybe you’ll have

Prepared exclusively for Francilene Procopio Garcia

TEST FREQUENCY 92

to nursemaid the build machine, or some other token, menial
task.

A little lighthearted law enforcement usually provides enough
motivation against careless accidents. But what happens if
you have to make an incompatible change to the code, or if
you make a change that does cause other tests to fail else-
where in the system?

The precise answer depends on the methodology and process
you’re using on the project, but somehow you need to coordi-
nate your changes with the folks who are responsible for the
other pieces of code—which may well be you! The idea is to
make all of the necessary changes at once, so the rest of the
team sees a coherent picture (that actually works) instead of
a fragmented, non-functional “work in progress.” (For more
information on how to use version control to set up experi-
mental developer branches, see [TH03].)

Sometimes the real world is not so willing, and it might take a
few hours or even a few days to work out all of the incompati-
ble bits and pieces, during which time the build is broken. If it
can’t be helped, then make sure that it is well-communicated.
Make sure everyone knows that the build will be broken for
the requisite amount of time so that everyone can plan around
it as needed. If you’re not involved, maybe it would be a good
time to take your car in for an oil change or slip off to the
beach for a day or two. If you are involved, get it done quickly
so everyone else can come back from the beach and get to
work!

8.3 Test Frequency

How often should you run unit tests? It depends on what
you’re doing, and your personal habits, but here are some
general guidelines that we find helpful. You want to perform
enough testing to make sure you’re catching everything you
need to catch, but not so much testing that it interferes with
producing production code.

Write a new method
Compile and run local unit tests.

Prepared exclusively for Francilene Procopio Garcia

TESTS AND LEGACY CODE 93

Fix a bug
Run tests to demonstrate bug; fix and re-run unit tests.

Any successful compile
Run local unit tests.

Each check-in to version control
Run all module or system unit tests.

Continuously
A dedicated machine should be running a full build and
test, from scratch, automatically throughout the day (ei-
ther periodically or on check-in to version control).

Note that for larger projects, you might not be able to compile
and test the whole system in under a few hours. You may only
be able to run a full build and test overnight. For even larger
projects, it may have to be every couple of days—and that’s a
shame, because the longer the time between automatic builds
the longer the “feedback gap” between creation of a problem
and it’s identification.

The reason to have a more-or-less continuous build is so that
it can identify any problems quickly. You don’t want to have to
wait for another developer to stumble upon a build problem if
you can help it. Having a build machine act as a constant de-
veloper increases the odds that it will find a problem, instead
of a real developer.

When the build machine does find a problem, then the whole
team can be alerted to the fact that it’s not safe to get any new
code just yet, and can continue working with what they have.
That’s better than getting stuck in a situation where you’ve
gotten fresh code that doesn’t work.

For more information on setting up automatic build and test-
ing systems, nightly and continuous builds, and automation
in general please see [Pro04].

8.4 Tests and Legacy Code

So far, we’ve talked about performing unit tests in the context
of new code. But we haven’t said what to do if your project
has a lot of code already—code that doesn’t have unit tests.

Prepared exclusively for Francilene Procopio Garcia

TESTS AND LEGACY CODE 94

It all depends on what kind of state that code is in. If it’s rea-
sonably well-factored and modular, such that you can get at
all of the individual pieces you need to, then you can add unit
tests fairly easily. If, on the other hand, it’s just a “big ball of
mud” all tangled together, then it might be close to impossi-
ble to test without substantial rewriting. Most older projects
aren’t perfectly factored, but are usually modular enough that
you can add unit tests.

For new code that you write, you’ll obviously write unit tests
as well. This may mean that you’ll have to expose or break out
parts of the existing system, or create mock objects in order
to test your new functionality.

For existing code, you might choose to methodically add unit
tests for everything that is testable. But that’s not very prag-
matic. It’s better to add tests for the most broken stuff first,
to realize a better return on investment of effort.

The most important aspect of unit tests in this environment
is to prevent back-sliding: to avoid the death-spiral where
maintenance fixes and enhancements cause bugs in existing
features. We use JUnit unit tests as regression tests during
normal new code development (to make sure new code doesn’t
break anything that had been working), but regression testing
is even more important when dealing with legacy code.

And it doesn’t have to cover the entire legacy code base, just
the painful parts. Consider the following true story from a
pragmatic developer:

Regression Tests Save the Day
“Tibbert Enterprises1 ships multiple applications,
all of which are based on a common Lower Level
Library that is used to access the object database.

One day I overheard some application develop-
ers talking about a persistent problem they were
having. In the product’s Lower Level interface, you
can look up objects using the object name, which
includes a path to the object. Since the application

1Not their real name.

Prepared exclusively for Francilene Procopio Garcia

TESTS AND LEGACY CODE 95

has several layers between it and the Lower Level
code, and the Lower Level code has several more
layers to reach the object database, it takes a while
to isolate a problem when the application breaks.

And the application broke. After half the ap-
plication team spent an entire day tracking down
the bug, they discovered the bug was in the Lower
Level code that accessed the database. If you had
a space in the name, the application died a violent,
messy death. After isolating the Lower Level code
related to the database access, they presented the
bug to the owner of the code, along with a fix. He
thanked them, incorporated their fix, and commit-
ted the fixed code into the repository.

But the next day, the application died. Once
again, a team of application developers tracked it
down. It took only a half-a-day this time (as they
recognized the code paths by now), and the bug
was in the same place. This time, it was a space
in the path to the object that was failing, instead of
a space in the name itself. Apparently, while inte-
grating the fix, the developer had introduced a new
bug. Once again, they tracked it down and pre-
sented him with a fix. It’s Day Three, and the ap-
plication is failing again! Apparently the developer
in question re-introduced the original bug.

The application manager and I sat down and
figured out that the equivalent of nearly two man-
months of effort had been spent on this one issue
over the course of one week by his team alone (and
this likely affected other teams throughout the com-
pany). We then developed JUnit tests that tested
the Lower Level API calls that the application prod-
uct was using, and added tests for database access
using spaces in both the object name and in the
path. We put the product under the control of our
continuous-build-and-test program (using Cruise-
Control) so that the unit tests were run automat-
ically every time code got committed back to the
repository.

Sure enough, the following week, the test failed

Prepared exclusively for Francilene Procopio Garcia

TESTS AND REVIEWS 96

on two successive days, at the hands of the original
developer. He actually came to my office, shook my
hand, and thanked me when he got the automatic
notification that the tests had failed.

You see, without the JUnit test, the bad code
made it out to the entire company during the night-
ly builds. But with our continuous build and test,
he (and his manager and tester) saw the failure at
once, and he was able to fix it immediately before
anyone else in the company used the code. In fact,
this test has failed half a dozen times since then.
But it gets caught, so its not a big deal anymore.
The product is now stable because of these tests.

We now have a rule that any issue that pops
up twice must have a JUnit test by the end of the
week.”

In this story, Tibbert Enterprises aren’t using JUnit to prove
things work so much as they are using it to inoculate against
known issues. As they slowly catch up, they’ll eventually ex-
pand to cover the entire product with unit tests, not just the
most broken parts.

When you come into a shop with no automated tests of any
kind, this seems to be a very effective approach. Remember,
the only way to eat an elephant is one bite at a time.

8.5 Tests and Reviews

Teams that enjoy success often hold code reviews. This can
be an informal affair where a senior person just gives a quick
look at the code. Or perhaps two people are working on the
code together, using Extreme Programming’s “Pair Program-
ming” practice. Or maybe it’s a very formal affair with check-
lists and a small committee.

However you perform code reviews (and we suggest that you
do), make the test code an integral part of the review process.
Since test code is held up to the same high standards as pro-
duction code, it should be reviewed as well.

In fact, it can sometimes be helpful to expand on the idea of
“test-first design” to include both writing and reviewing test

Prepared exclusively for Francilene Procopio Garcia

TESTS AND REVIEWS 97

code before writing production code. That is, code and review
in this order:

1. Write test cases and/or test code.

2. Review test cases and/or test code.

3. Revise test cases and/or test code per review.

4. Write production code that passes the tests.

5. Review production and test code.

6. Revise test and production code per review.

Reviews of the test code are incredibly useful. Not only are
reviews more effective than testing at finding bugs in the first
place, but by having everyone involved in reviews you can
improve team communication. People on the team get to see
how others do testing, see what the team’s conventions are,
and help keep everyone honest.

You can use the checklists on page 135 of this book to help
identify possible test cases in reviews. But don’t go overboard
testing things that aren’t likely to break, or repeat essentially
similar tests over and over just for the sake of testing.

Finally, you may want to keep track of common problems
that come up again and again. These might be areas where
more training might be needed, or perhaps something else
that should be added to your standard review checklist.

For example, at a client’s site several years ago, we discovered
that many of the developers misunderstood exception han-
dling. The code base was full of fragments similar to the fol-
lowing:

try {
DatabaseConnection dbc = new DatabaseConnection();
insertNewRecord(dbc, record);
dbc.close();

} catch (Exception e) {}

That is to say, they simply ignored any exceptions that might
have occurred. Not only did this result in random missing
records, but the system leaked database connections as well—
any error that came up would cause the close to be skipped.

Prepared exclusively for Francilene Procopio Garcia

TESTS AND REVIEWS 98

We added this to the list of known, typical problems to be
checked during reviews. As code was reviewed, any of these
infamous catch statements that were discovered were first
identified, then proper unit tests put in place to force various
error conditions (the “E” in RIGHT -BICEP), and the code fixed
to either propagate or handle the exception. System stability
increased tremendously as a result of this simple process.

Prepared exclusively for Francilene Procopio Garcia

Chapter 9

Design Issues

So far we have discussed unit testing as it helps you to un-
derstand and verify the functional, operational characteristics
of your code. But unit testing offers several opportunities to
improve the design and architecture of your code as well.

In this chapter, we’ll take a look at the following design-level
issues:

• Better separation of concerns by designing for testability

• Clarifying design by defining class invariants

• Improving interfaces with test-driven design

• Establishing and localizing validation responsibilities

9.1 Designing for Testability

“Separation of Concerns” is probably the single most impor-
tant concept in software design and implementation. It’s the
catch-all phrase that encompasses encapsulation, orthogo-
nality, coupling, and all those other computer science terms
that boil down to “write shy code” [HT00].

You can keep your code well-factored (i.e., “shy”) and easier to
maintain by explicitly designing code to be testable. For ex-
ample, suppose you are writing a method that will sleep until
the top of the next hour. You’ve got a bunch of calculations
and then a sleep():

DESIGNING FOR TESTABILITY 100

public void sleepUntilNextHour()

throws InterruptedException {
int howlong;
xx xxxx x xxxx xx xx xxx;
// Calculate how long to wait...
x x xx xxx xxx x x xx;
xx xxxx x xxxx xx xx xxx;

Thread.sleep(howlong);
return;

}

How will you test that? Wait around for an hour? Set a timer,
call the method, wait for the method to return, check the
timer, handle the cases when the method doesn’t get called
when it should—this is starting to get pretty messy.

Perhaps you might refactor this method, just to make test-
ing easier. Instead of combining the calculation of how many
seconds to sleep with the sleep() method itself, split them
up:

public void sleepUntilNextHour()

throws InterruptedException {
int howlong = milliSecondsToNextHour(new Date());
Thread.sleep(howlong);
return;

}

What’s likely to break? The system’s sleep call? Or our code
that calculates the amount of time to wait? It’s probably a fair
bet to say that Java’s Thread.sleep() works as advertised
(even if it doesn’t, our rule is to always suspect our own code
first). So for now, you only need to test that the number of
seconds is calculated correctly, and what might have been a
hairy test with timers and all sorts of logic (not to mention an
hour’s wait) can be expressed very simply as:

assertEquals(10000,
milliSecondsToNextHour(TEST_DATE_10));

If we’re confident that milliSecondsToNextHour() works to
our satisfaction, then the odds are that sleepUntilNext-

Hour() will be reliable as well—if it is not, then at least we
know that the problem must be related to the sleep itself,
and not to the numerical calculation. You might even be able
to reuse the milliSecondsToNextHour() method in some
other context.

This is what we mean when we claim that you can improve
the design of code by making it easier to test. By changing

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 101

Figure 9.1: Recipes GUI Screen

code so that you can get in there and test it, you’ll end up
with a cleaner design that’s easier to extend and maintain as
well as test.

But instead of boring you with examples and techniques, all
you really need to do is remember this one fundamental ques-
tion when writing code:

How am I going to test this?

If the answer is not obvious, or if it looks like the test would be
ugly or hard to write, then take that as a warning signal. Your
design probably needs to be modified; change things around
until the code is easy to test, and your design will end up
being far better for the effort.

9.2 Refactoring for Testing

Let’s look at a real-life example. Here are excerpts from a
novice’s first attempt at a recipe management system. The
GUI, shown in Figure 9.1, is pretty straightforward. There’s
only one class, with GUI behavior and file I/O intermixed.

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 102

Recipes

name

ingredients

load()

save()

showGUI()

Figure 9.2: Original Recipes Static Class Diagram

It reads and writes individual recipes to files, using a line-
oriented format, somewhat like a INI or properties file:

NAME=Cheeseburger
INGREDIENTS=3
1/4 lb ground sirloin
3 slices Vermont cheddar cheese
2 slices maple-cured bacon c

he
e

se
b

ur
g

e
r.t

xt

And here’s the code, in it’s entirety. As is, this is pretty hard to
test. You’ve got to run the whole program and operate the GUI
to get at any part of it. All of the file I/O and search routines
access the widgets directly, and so are tightly coupled to the
GUI code (see, for instance, lines 35, 44, 49, and 61). In fact,
the UML diagram for this class, shown in Figure 9.2, is kind
of embarrassing—it’s just one big class!

Line 1 import java.awt.*;
- import java.awt.event.ActionListener;
- import java.awt.event.ActionEvent;
- import java.io.*;
5 import java.util.ArrayList;
-
- class Recipes extends Frame {
-
- private Label titleLabel =

10 new Label("Name of Recipe:", Label.LEFT);
- private TextField titleText = new TextField(30);
-
- private Label ingredientsLabel =
- new Label("Ingredients:",Label.LEFT);

15 private TextField ingredientsText =
- new TextField(30);
-
- private Button ingredientsRemoveSel =
- new Button("Remove Ingredient");

20 private List ingredientsList = new List(12, false);
- private List searchList = new List(12, false);
-
- private Button saveButton = new Button("Save");

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 103

- private Button searchButton = new Button("Search");
25 private Button exitButton = new Button("Exit");

- private TextField statusText = new TextField(40);
-
- public void loadFile() {
- statusText.setText(searchList.getSelectedItem());

30
- try {
- BufferedReader in = null;
- String thePath;
- thePath = "recipes/" +

35 searchList.getSelectedItem();
- in = new BufferedReader(
- new FileReader(thePath));
- String line;
- while ((line = in.readLine()) != null){

40 int pos = line.indexOf(’=’);
- String token = line.substring(0, pos);
- String value = line.substring(pos+1);
- if (token.equals("NAME")) {
- titleText.setText(value);

45 } else if (token.equals("INGREDIENTS")) {
- int num_lines = Integer.parseInt(value);
- for (int i=0; i < num_lines; i++) {
- line = in.readLine();
- ingredientsList.add(line);

50 }
- }
- }
- in.close();
- } catch (IOException e) {

55 System.err.println(e);
- statusText.setText(searchList.getSelectedItem()+
- " is corrupt");
- return;
- }

60 statusText.setText(searchList.getSelectedItem()+
- " loaded");
- }
-
- public void removeSel() {

65 int count;
- String str;
- str = ingredientsList.getSelectedItem();
- if (str != null) {
- count = ingredientsList.getSelectedIndex();

70 ingredientsList.remove(count);
- }
- }
-
- public void addIngredient() {

75 String str;
- str = ingredientsText.getText();
-
- if (str.length() != 0) {
- ingredientsList.add(str);

80 ingredientsText.setText("");
- }

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 104

- }
-
- public void exit() {

85 dispose();
- System.exit(0);
- }
-
-

90 public void saveFile(File theFile) {
-
- try {
- PrintWriter out = new PrintWriter(
- new FileWriter(theFile));

95
- out.println("NAME=" + titleText.getText());
-
- int counter = ingredientsList.getItemCount();
-

100 out.println("INGREDIENTS=" + counter);
- for (int i = 0; i < counter; i +=1){
- out.println(ingredientsList.getItem(i));
- }
-

105 out.close();
- statusText.setText("Saved "+
- titleText.getText());
- } catch (IOException e) {
- System.err.println(e);

110 }
- }
-
- public void save() {
- String str = statusText.getText();

115 File theFile = new File("recipes/" +
- titleText.getText() +
- ".txt");
- if (str.equals(titleText.getText() +
- ".txt Already exists")) {

120 saveFile(theFile);
- } else {
- if (theFile.exists() == true) {
- statusText.setText(titleText.getText() +
- ".txt Already exists");

125 }
- if (theFile.exists() == false) {
- saveFile(theFile);
- }
- }

130 }
-
- public void search() {
- String str;
- String[] dir_list;

135 ArrayList matches = new ArrayList();
-
- str = titleText.getText();
-
- searchList.removeAll();

140 statusText.setText("Partial match: "+
- titleText.getText());
-
- File path = new File("recipes/");

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 105

- dir_list = path.list();
145

- for (int i=0; i < dir_list.length; i++){
- String file_name = dir_list[i];
-
- // Truncate the ".txt" suffix

150 if (file_name.endsWith(".txt")) {
- dir_list[i] = file_name.substring(0,
- file_name.length() - 4);
- }
-

155 System.err.println("Checking " +
- file_name +
- " for " +
- str);
- if (file_name.indexOf(str) >= 0) {

160 matches.add(dir_list[i]);
- }
- }
-
- for (int i = 0; i < matches.size(); i++){

165 searchList.add(matches.get(i) + ".txt");
- }
- }
-
- public void showGUI() {

170 setTitle("Recipes");
-
- Panel mainp = new Panel(new FlowLayout());
-
- Panel p1 = new Panel(new BorderLayout());

175 p1.add(titleLabel, BorderLayout.WEST);
- p1.add(titleText, BorderLayout.EAST);
- mainp.add(p1);
-
- Panel p2 = new Panel(new BorderLayout());

180 p2.add(ingredientsLabel, BorderLayout.WEST);
- p2.add(ingredientsText, BorderLayout.EAST);
- mainp.add(p2);
-
- Panel p3 = new Panel(new BorderLayout());

185 p3.add(ingredientsList, BorderLayout.CENTER);
- p3.add(searchList, BorderLayout.EAST);
- p3.add(ingredientsRemoveSel, BorderLayout.SOUTH);
- mainp.add(p3);
-

190 Panel p4 = new Panel(new BorderLayout());
- p4.add(saveButton, BorderLayout.WEST);
- p4.add(searchButton, BorderLayout.CENTER);
- p4.add(exitButton, BorderLayout.EAST);
- p4.add(statusText, BorderLayout.SOUTH);

195 mainp.add(p4);
-
- // Add the object listeners
- exitButton.addActionListener(new ActionListener() {
- public void actionPerformed(ActionEvent e) {

200 exit();
- }
- });
-
- ingredientsText.addActionListener(new ActionListener() {

205 public void actionPerformed(ActionEvent e) {

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 106

- addIngredient();
- }
- });
-

210 ingredientsRemoveSel.addActionListener(new ActionListener() {
- public void actionPerformed(ActionEvent e) {
- removeSel();
- }
- });

215
- saveButton.addActionListener(new ActionListener() {
- public void actionPerformed(ActionEvent e) {
- save();
- }

220 });
-
- searchButton.addActionListener(new ActionListener() {
- public void actionPerformed(ActionEvent e) {
- search();

225 }
- });
-
- searchList.addActionListener(new ActionListener() {
- public void actionPerformed(ActionEvent e) {

230 loadFile();
- }
- });
-
- add(mainp);

235 setSize(400,400);
- show();
- }
-
- public static void main(String args[]){

240 Recipes obj = new Recipes();
- obj.showGUI();
- }
- } Re

c
ip

e
s.

ja
va

We clearly need to improve this code. Let’s begin by making a
separate object to hold a recipe, so that we can construct test
recipe data easily and toss it back and forth to the screen,
disk, network, or wherever. This is just a simple data holder,
with accessors for the data members.
Line 1 import java.util.ArrayList;

- import java.util.Iterator;
-
- public class Recipe {
5 protected String name;
- protected ArrayList ingredients;
-
- public Recipe() {
- name = "";

10 ingredients = new ArrayList();
- }
-
- public Recipe(Recipe another) {

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 107

- name = another.name;
15 ingredients = new ArrayList(another.ingredients);

- }
-
- public void setName(String aName) {
- name = aName;

20 }
- public String getName() {
- return name;
- }
-

25 public void addIngredient(String aThing) {
- ingredients.add(aThing);
- }
-
- public Iterator getIngredients() {

30 return ingredients.iterator();
- }
-
- public int getNumIngredients() {
- return ingredients.size();

35 }
-
- } Re

c
ip

e
.ja

va

Next, we need to pull the code out from the original Recipes
class to save and load a file to disk.

To help separate file I/O from any other kind of I/O, we’ll per-
form the file I/O in a helper class that uses Recipe. We want
to take out all of the GUI widget references from the original
source code, and use instance member variables instead.
Line 1 import java.io.IOException;

- import java.io.BufferedReader;
- import java.io.FileReader;
- import java.io.PrintWriter;
5 import java.io.FileWriter;
- import java.util.Iterator;
-
-
- public class RecipeFile {

10
- public Recipe load(String fileName)
- throws IOException {
-
- BufferedReader in = null;

15 Recipe result = new Recipe();
-
- in = new BufferedReader(new FileReader(fileName));
- String line;
- while ((line = in.readLine()) != null){

20 int pos = line.indexOf(’=’);
- String token = line.substring(0, pos);
- String value = line.substring(pos+1);
- if (token.equals("TITLE")) {
- result.setName(value);

25 } else if (token.equals("INGREDIENTS")) {
- int num_lines = Integer.parseInt(value);

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 108

- for (int i=0; i < num_lines; i++) {
- line = in.readLine();
- result.addIngredient(line);

30 }
- }
- }
- in.close();
- return result;

35 }
-
- public void save(String fileName, Recipe recipe)
- throws IOException {
-

40 PrintWriter out = new PrintWriter(
- new FileWriter(fileName));
-
- out.println("NAME=" + recipe.getName());
- out.println("INGREDIENTS=" +

45 recipe.getNumIngredients());
-
- Iterator itr = recipe.getIngredients();
- while (itr.hasNext()) {
- out.println(itr.next());

50 }
- out.close();
- }
- } Re

c
ip

e
Fi

le
.ja

va

Now we’re in a position where we can write a genuine test case
that will test reading and writing to disk, without using any
GUI code.
Line 1 import junit.framework.*;

- import java.io.File;
- import java.io.IOException;
- import java.util.Iterator;
5
- public class TestRecipe extends TestCase {
-
- public void testSaveandRestore() throws IOException {
-

10 final String test_name =
- "Cheeseburger";
- final String test_ing1 =
- "1/4 lb ground sirloin";
- final String test_ing2 =

15 "3 slices Vermont cheddar cheese";
- final String test_ing3 =
- "2 slices maple-cured bacon";
-
- // Save one out

20 Recipe rec = new Recipe();
- rec.setName(test_name);
- rec.addIngredient(test_ing1);
- rec.addIngredient(test_ing2);
- rec.addIngredient(test_ing3);

25
- RecipeFile filer = new RecipeFile();
- filer.save("test.recipe", rec);
-
- try {

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 109

30 // Now get it back
- Recipe rec2 = new Recipe();
- filer = new RecipeFile();
- rec2 = filer.load("test.recipe");
-

35 assertEquals(test_name, rec2.getName());
- Iterator itr = rec2.getIngredients();
-
- assertEquals(test_ing1, itr.next());
- assertEquals(test_ing2, itr.next());

40 assertEquals(test_ing3, itr.next());
- assertFalse(itr.hasNext());
- } finally {
- new File("test.recipe").delete();
- }

45
- }
- } Te

st
Re

c
ip

e
.ja

va

At line 11 we’ll declare some constant strings for testing. Then
we make a new, empty object and populate it with the test
data beginning at line 21. We could just pass literal strings
directly into the object instead, and not bother with final

variables, but since we’ll need to check the results against
these strings, it makes sense to put them in common con-
stants that we can reference from both spots.

With a Recipe data object now fully populated, we’ll call the
save() method to write the recipe to disk at line 27. Now we
can make a brand-new Recipe object, and ask the helper to
load it from that same file at line 33.

With the restored object in hand, we can now proceed to run
a whole bunch of asserts to make sure that the test data we
set in the rec object has been restored in the rec2 object.

Finally, at line 43 we play the part of a good neighbor and
delete the temporary file we used for the test. Note that we
use a finally clause to ensure that the file gets deleted, even
if one of our assertions fails.

Now we can run the unit test in the usual fashion to make
sure that the code is reading and writing to disk okay.

STOPTry running this example before reading on. . .

There was 1 failure:
1) testSaveandRestore(TestRecipe)junit.framework.ComparisonFailure:

expected:<Cheeseburger> but was:<>
at TestRecipe.testSaveandRestore(TestRecipe.java:33)

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 110

Whoops! Seems that wasn’t working as well as we thought—
we’re not getting the name line of the recipe back. When
we save the file out in RecipeFile.java, the code is us-
ing the key string "NAME" to identify the field, but when we
read it back in (line 23 of load()), it’s trying to use the string
"TITLE". That’s just not going to work. We can easily change
that to read "NAME", to match the key used for the save, but
stop and ask yourself the critical question:

Could this happen anywhere else in the code?

Using strings as keys is a fine idea, but it does open the door
to introduce errors due to misspellings or inconsistent naming
as we’ve seen here. So perhaps this failing test is trying to tell
you something more—perhaps you should refactor the code
and pull out those literal strings into constants. The class
then looks like this:
Line 1 import java.io.IOException;

- import java.io.BufferedReader;
- import java.io.FileReader;
- import java.io.PrintWriter;
5 import java.io.FileWriter;
- import java.util.Iterator;
-
-
- public class RecipeFile {

10
- // No one else should read or write
- // this file, so these strings
- // are private.
- private final static String NAME_TOK =

15 "NAME";
- private final static String INGREDIENTS_TOK =
- "INGREDIENTS";
-
- public Recipe load(String fileName)

20 throws IOException {
-
- BufferedReader in = null;
- Recipe result = new Recipe();
-

25 in = new BufferedReader(new FileReader(fileName));
- String line;
- while ((line = in.readLine()) != null){
- int pos = line.indexOf(’=’);
- String token = line.substring(0, pos);

30 String value = line.substring(pos+1);
- if (token.equals(NAME_TOK)) {
- result.setName(value);
- } else if (token.equals(INGREDIENTS_TOK)) {
- int num_lines = Integer.parseInt(value);

35 for (int i=0; i < num_lines; i++) {
- line = in.readLine();
- result.addIngredient(line);

Prepared exclusively for Francilene Procopio Garcia

REFACTORING FOR TESTING 111

- }
- }

40 }
- in.close();
- return result;
- }
-

45 public void save(String fileName, Recipe recipe)
- throws IOException {
-
- PrintWriter out = new PrintWriter(
- new FileWriter(fileName));

50
- out.println(NAME_TOK + "=" +
- recipe.getName());
- out.println(INGREDIENTS_TOK + "=" +
- recipe.getNumIngredients());

55
- Iterator itr = recipe.getIngredients();
- while (itr.hasNext()) {
- out.println(itr.next());
- }

60 out.close();
- }
- } Re

c
ip

e
Fi

le
.ja

va

We’ve improved the original program a lot with these simple
changes. In order to test the file I/O, we:

• Made Recipe a first-class object

• Moved file I/O routines out of the GUI and into Recipe-

File

• Pulled literals into constants to avoid bugs from typos

Finally, now that we have unit tests that provide the basic ca-
pabilities of a Recipe, we need to re-integrate the new Recipe

class into the GUI itself and tend to the file I/O. We’d like to
end up with something like Figure 9.3.

Now RecipeGUI holds an object of type Recipe, and uses
the helper class RecipeFile to read and write recipes to
disk. When the user presses the save button, the GUI will
set values from the widgets in the Recipe object and call
RecipeFile.save(). When a new recipe is loaded in, the
GUI will get the proper values from the Recipe object re-
turned from RecipeFile.load().

Testing GUI’s is hard, and isn’t always worth the extreme ef-
fort. By separating the pure GUI from the guts of the appli-

Prepared exclusively for Francilene Procopio Garcia

TESTING THE CLASS INVARIANT 112

Recipe

name

ingredients

RecipeGUI

showGUI()

RecipeFile

load()

save()

Figure 9.3: Refactored Recipes Static Class Diagram

cation, you can easily add and test business features without
involving the GUI.

The main GUI class RecipeGUI (formerly known as Recipes)
should now contain nothing but GUI-oriented code: widgets,
callbacks, and so on. Thus, all of the “business logic” and file
I/O can be in non-GUI, fully testable classes.

And we’ve got a clean design as an added bonus.

9.3 Testing the Class Invariant

Another way to improve the design of a class is by defining
and verifying the “class invariant.”1

A class invariant is an assertion, or some set of assertions,
about objects of a class. For an object to be valid, all of these
assertions must be true. They cannot vary.

For instance, a class that implements a sorted list may have
the invariant that its contents are in sorted order. That means

1For more information on pre-conditions, post-conditions and invariants,
see [Mey97].

Prepared exclusively for Francilene Procopio Garcia

TESTING THE CLASS INVARIANT 113

that no matter what else happens, no matter what methods
are called, the list must always be in sorted order—at least as
viewed from outside the object. Within a method, of course,
the invariant may be momentarily violated as the class per-
forms whatever housekeeping is necessary. But by the time
the method returns, or the object is otherwise available for
use (as in a multi-threaded environment), the invariant must
hold true or else it indicates a bug.

That means it’s something you could check for as part of every
unit test for this class.

The invariant is generally an artifact of implementation: inter-
nal counters, the fact that certain member variables are pop-
ulated, and so on. The invariant is not the place to check for
user input validation or anything of that sort. When writing
tests, you want to test just your one thing, but at the same
time you want to make sure the overall state of the class is
consistent—you want to make sure you have not inflicted any
collateral damage.

Here are some possible areas where class invariants might
apply.

Structural

The most common invariants are structural in nature. That
is, they refer to structural properties of data. For instance, in
an order-entry system you might have invariants such as:

• Every line item must belong to an order

• Every order must have one or more line items

When working with arrays of data, you’ll typically maintain
a member variable that acts as an index into the array. The
invariants on that index would include:

• index must be >= 0

• index must be < array length

You want to check the invariant if any of these conditions
are likely to break. Suppose you are performing some sort of
calculation on the index into an array; you’d want to check the
invariant throughout your unit tests to make sure the class

Prepared exclusively for Francilene Procopio Garcia

TESTING THE CLASS INVARIANT 114

is never in an inconsistent state. We showed this in the stack
class example on page 51.

Structural errors will usually cause the program to throw an
exception and/or terminate abruptly. For that matter, so will
failing the invariant check. The difference is that when the
invariant is violated, you know about it right away—right at
the scene of the crime. You’ll probably also know exactly what
condition was violated. Without the invariant, the failure may
occur far from the original bug, and backtracking to the cause
might take you anywhere from a few minutes to a few days.

More importantly, checking the invariant makes sure that you
aren’t passing the tests based just on luck. It may be that
there’s a bug that the tests aren’t catching that will blow up
under real conditions. The invariant might help you catch
that early, even if an explicit test does not.

Mathematical

Other constraints are more mathematical in nature. Instead
of verifying the physical nature of data structures, you may
need to consider the logical model. For example:

• Debits and credits on a bank account match the balance.

• Amounts measured in different units match after con-
version (an especially popular issue with spacecraft).

This starts to sound a lot like the boundary conditions we
discussed earlier, and in a way they are. The difference is
that an invariant must always be true for the entire visible
state of a class. It’s not just a fleeting condition; it’s always
true.

Data Consistency

Often times an object may present the same data in different
ways—a list of items in a shopping cart, the total amount of
the sale, and the total number of items in the cart are closely
related. From a list of items with details, you can derive the
other two figures. It must be an invariant that these figures
are consistent. If not, then there’s a bug.

Prepared exclusively for Francilene Procopio Garcia

TEST -DRIVEN DESIGN 115

9.4 Test-Driven Design

Test-driven development is a valuable technique where you
always write the tests themselves before writing the methods
that they test [Bec00]. As a nice side benefit of this style of
working, you can enjoy “test-driven design” and significantly
improve the design of your interfaces.

You’ll get better interfaces (or API’s) because you are “eating
your own dog food,” as the saying goes—you are able to apply
feedback to improve the design.

That is, by writing the tests first, you have now placed yourself
in the role of a user of your code, instead of the implementor of
your code. From this perspective, you can usually get a much
better sense of how an interface will really be used, and might
see opportunities to improve its design.

For example, suppose you’re writing a routine that does some
special formatting for printed pages. There are a bunch of
dimensions that need to be specified, so you code up the first
version like this:

addCropMarks(PSStream str, int paper_width,
int paper_height,
int body_width,
int body_height);

Then as you start to write the tests (based on real-world data)
you notice that a pattern emerges from the test code:

public process() {
xxx xx xxxxx xxx xx x xx xxx xxx xxxx xx xx;
xx xx xxxx x xxx xxxx xx xx xx xxx xx xx xx;
x xx x xxx xxxx xx xxx xx xxxxx xxxx;
addCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xx xxx x xxx xxx xx x xxx xxx xxx xxx xx xxx;
xxx xx xx x xxx xxxx xx xx xx xxx xxxxx xxxx;
x xxx xxxx xx xxxx xx xx xxx xxx x xxx x xx xx;

x xxx xxx xxxx x xxx xxx xxx xxxx xx xxx xx;
addCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xx xx xxxx xx xx xxx xxx xxx xxxx xx xx xx xx;
x xx xx x xxxx xxx x xxxx xx xx xx xxx xxx xx;
addCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xxx xx xxxxxxx xxx xxx xxxxx x xxx xxxx xx xxxxxx;
xx x xxx xxxx xxxx xxx xxxx xxxx xx x x xx xx;
addCropMarks(str, 5.0, 7.0, 4.0, 5.5);
xx xxx xxx xx x xxx xxx xxx xxxx xx xx xx xxx xx;
xxx xx xxxxx xxx xx xxx x xxx xxxx xx xx xx xxx;
addCropMarks(str, 5.0, 7.0, 4.0, 5.5);
xx xx xxxxx xx x xx xxx xxx xxxx xx xx;
x xxx x xxx xxxx xx xx xxx xxxx xx;

}

Prepared exclusively for Francilene Procopio Garcia

TEST -DRIVEN DESIGN 116

As it turns out, there are only a handful of common paper
sizes in use, but you still need to allow for odd-ball sizes as
necessary. So the first thing to do—just to make the tests
easier, of course—is to factor out the size specification into a
separate object.

PaperSpec standardPaper1 = new PaperSpec(8.5, 11.0,
6.0, 8.5);

PaperSpec standardPaper2 = new PaperSpec(5.0, 7.0,
4.0, 5.5);

xxx xx xxxxxxx xxx xxx xxxxx x xxx xxxx xx xxxxxx;
xx x xxx xxxx xxxx xxx xxxx xxxx xx x x xx xx;
addCropMarks(str, standardPaper1);
addCropMarks(str, standardPaper1);
...
xx xxx xxx xx x xxx xxx xxx xxxx xx xx xx xxx xx;
xxx xx xxxxx xxx xx xxx x xxx xxxx xx xx xx xxx;
addCropMarks(str, standardPaper2);

Now the tests are much cleaner and easier to follow, and the
application code that uses this will be cleaner as well.

Since these standard paper sizes don’t vary, we can make
a factory class that will encapsulate the creation of all the
standard paper sizes.

public class StandardPaperFactory {
public static PaperSpec getLetterInstance();
public static PaperSpec getA4Instance();
public static PaperSpec getLegalInstance();
xxxxxx xxxxxx xxxxxxxxx xxxxxxxxxxx;
xxxxxx xxxxxx xxxxxxxxx xxxxxxxxxxx;

}

By making the tests cleaner and easier to write, you will make
the real code cleaner and easier to write as well.

Try it

Exercises

8. Design an interest calculator that calculates the amount of in- Answer
on 145terest based on the number of working days in-between two

dates. Use test-first design, and take it one step at a time.

Prepared exclusively for Francilene Procopio Garcia

TESTING INVALID PARAMETERS 117

9.5 Testing Invalid Parameters

One question that comes up when folks first start testing is:
“Do I have to test whether my class validates it parameters?”
The answer, in best consultant fashion, is “it depends. . . .”

Is your class supposed to validate its parameters? If so, then
yes, you need to test that this functionality is correct. But
there’s a larger question here: Who’s responsible for validat-
ing input data?

In many systems, the answer is mixed, or haphazard at best.
You can’t really trust that any other part of the system has
checked the input data, so you have to check it yourself—or at
least, that aspect of the input data that particularly concerns
you. In effect, the data ends up being checked by everyone
and no one. Besides being a grotesque violation of the DRY
principle [HT00], it wastes a lot of time and energy—and we
typically don’t have that much extra to waste.

In a well-designed system, you establish up-front the parts of
the system that need to perform validation, and localize those
to a small and well-known part of the system.

So the first question you should ask about a system is, “who
is supposed to check the validity of input data?”

Generally we find the easiest rule to adopt is the “keep the
barbarians out at the gate” approach. Check input at the
boundaries of the system, and you won’t have to duplicate
those tests inside the system. Internal components can trust
that if the data has made it this far into the system, then it
must be okay.

It’s sort of like a hospital operating room or industrial “clean
room” approach. You undergo elaborate cleaning rituals be-
fore you—or any tools or materials—can enter the room, but
once there you are assured of a sterile field. If the field be-
comes contaminated, it’s a major catastrophe; you have to
re-sterilize the whole environment.

Any part of the software system that is outward-facing (a UI,
or interface to another system) needs to be robust, and not
allow any incorrect or unvalidated data through. What defines

Prepared exclusively for Francilene Procopio Garcia

TESTING INVALID PARAMETERS 118

“correct” or valid data should be part of specification you’re
testing against.

What does any of this have to do with unit testing?

It makes a difference with regard to what you need to test
against. As we mentioned earlier, if it isn’t your code’s respon-
sibility to check for input data problems, then don’t waste
time checking for it. If it is your responsibility, then you need
to be extra vigilant—because now the rest of the system is
potentially relying on you, and you alone.

But that’s okay. You’ve got unit tests.

Prepared exclusively for Francilene Procopio Garcia

Appendix A

Gotchas
Here are some popular “gotchas,” that is, issues, problems, or
misconceptions that have popped up over and over again to
trap the unwary.

A.1 As Long As The Code Works

Some folks seem to think that it’s okay to live with broken unit
tests as long as the code itself works. Code without tests—
or code with broken tests—is broken. You just don’t know
where, or when. In this case, you’ve really got the worst of
both worlds: all that effort writing tests in the first place is
wasted, and you still have no confidence that the code is doing
what it ought.

If the tests are broken, treat it just as if the code were broken.

A.2 “Smoke” Tests

Some developers believe that a “smoke test” is good enough
for unit testing. That is, if a method makes it all the way to
the end without blowing up, then it passed.

You can readily identify this sort of a test: there are no asserts
within the test itself, just one big assertTrue(true) at the
end. Maybe the slightly more adventurous will have multiple
assertTrue(true)’s throughout, but no more than that. All
they are testing is, “did it make it this far?”

“WORKS ON MY MACHINE” 120

And that’s just not enough. Without validating any data or
other behavior, all you’re doing is lulling yourself into a false
sense of security—you might think the code is tested, but it is
not.

Watch out for this style of testing, and correct it as soon as
possible. Real testing checks results. Anything else is just
wasting everyone’s time.

A.3 “Works On My Machine”

Another pathologic problem that turns up on some projects
is that old excuse, “It’s not broken, it works on my machine.”
This points to a bug that has some correlation with the envi-
ronment. When this happens, ask yourself:

• Is everything under version control?

• Is the development environment consistent on the af-
fected machines?

• Is it a genuine bug that just happens to manifest itself
on another machine (because it’s faster, or has more or
less memory, etc.)?

End users, in particular, don’t like to hear that the code works
on your machine and not theirs.

All tests must pass on all machines; otherwise the code is
broken.

A.4 Floating-Point Problems

Quite a few developers appear to have missed that one day in
class when they talked about floating-point numbers. It’s a
fact of life that there are floating point numbers that can only
be approximately represented in computer hardware. The
computer only has so many bits to work with, so something
has to give.

This means that 1.333 + 1.333 isn’t going to equal 2.666
exactly. It will be close, but not exact. That’s why the JUnit
floating-point asserts require you to specify a tolerance along
with the desired values (see the discussion on page 23).

Prepared exclusively for Francilene Procopio Garcia

TESTS TAKE TOO LONG 121

But still you need to be aware that “close enough” may be
deceptive at times. Your tests may be too lenient for the real
world’s requirements, for instance. Or you might puzzle at an
error message that says:

There was 1 failure:
1) testXyz(TestXyz)junit.framework.AssertionFailedError:

expected:<1.0000000> but was:<1.0000000>
at TestXyz.testXyz(TestXyz.java:10)

“Gosh, they sure look equal to me!” But they aren’t—there
must a difference that’s smaller than is being displayed by
the print method.

As a side note, you can get a similar problem when using
date and time types. Two dates might look equal as they are
normally displayed—but maybe the milliseconds aren’t equal.

A.5 Tests Take Too Long

Unit tests need to run fairly quickly. After all, you’ll be run-
ning them a lot. But suddenly you might notice that the tests
are taking too long. It’s slowing you down as you write tests
and code during the day.

That means it’s time to go through and look at your tests with
a fresh eye. Cull out individual tests that take longer than
average to run, and group them together somewhere.

You can run these optional, longer-running tests once a day
with the build, or when you check in, but not have to run
them every single time you change code.

Just don’t move them so far out of the way that they never get
run.

A.6 Tests Keep Breaking

Some teams notice that the tests keep breaking over and over
again. Small changes to the code base suddenly break tests
all over the place, and it takes a remarkable amount of effort
to get everything working again.

Prepared exclusively for Francilene Procopio Garcia

TESTS FAIL ON SOME MACHINES 122

This is usually a sign of excessive coupling. Test code might
be too tightly-coupled to external data, to other parts of the
system, and so on.

As soon as you identify this as a problem, you need to fix it.
Isolate the necessary parts of the system to make the tests
more robust, using the same techniques you would use to
minimize coupling in production code. See [HT00] for more
details on orthogonality and coupling, or [FBB+99] for infor-
mation on refactoring and design smells, and don’t forget to
use Mock Objects (Chapter 6) to decouple yourself from the
real world.

A.7 Tests Fail on Some Machines

Here’s a common nightmare scenario: all the tests run fine—
on most machines. But on certain machines they fail consis-
tently. Maybe on some machines they even fail intermittently.

What on earth could be going on? What could be different on
these different machines?

The obvious answer is differences in the version of the operat-
ing system, libraries, the Java runtime engine, the database
driver; that sort of thing. Different versions of software have
different bugs, workarounds, and features, so it’s quite possi-
ble that machines configured differently might behave differ-
ently.

But what if the machines are configured with identical soft-
ware, and you still get different results?

It might be that one machine runs a little faster than the
other, and the difference in timing reveals a race condition
or other problem with concurrency. The same thing can show
up on single vs. multiple-processor machines.

It’s a real bug, it just happened not to have shown up before.
Track it down on the affected machine using the usual meth-
ods. Prove the bug exists on that machine as best you can,
and verify that all tests pass on all machines when you are
done.

Prepared exclusively for Francilene Procopio Garcia

MY MAIN IS NOT BEING RUN 123

A.8 My main is Not Being Run

If you write a custom main in your test code it will be run
when you run that class (for example, from the command
line). However, if run by a JUnit test runner, your main will
not be executed.

In particular, if you are using Ant1 to run tests using the JUnit
Task, main will not be called.

That’s why you don’t want to place any sort of setup code in
main. Use the JUnit-provided setUp and tearDown methods
(discussed on page 29) instead.

1http://ant.apache.org

Prepared exclusively for Francilene Procopio Garcia

Appendix B

Installing JUnit

Several IDE’s come with JUnit already integrated in the prod-
uct, right out of the box. If yours is one of these, then you need
only consult the documentation that came with your system
to begin using JUnit.

If you need to install or integrate JUnit yourself, then please
read on.

JUnit for Java can be downloaded for free from the web.1

There you will also find instructions for installing and inte-
grating JUnit into popular Java environments, including:

• JDeveloper

• Eclipse

• Forte/Netbeans

• Intelli J

• JBuilder

• TogetherJ

• VisualAge

Some of these products are available in different versions,
ranging from free, entry-level versions to Enterprise-class edi-
tions with many bells and whistles. The instructions for inte-

1http://junit.org

COMMAND-LINE INSTALLATION 125

grating JUnit into your IDE may vary depending on both the
product version and particular release, so we will not dupli-
cate them here.

B.1 Command-line installation

JUnit is provided as a JAR file that contains all of the neces-
sary classes. To install JUnit, all you have to do is put the
JAR file where your compiler can find it.

If you are not using an IDE, but are just using the JDK directly
from the command line, then you have to set your CLASSPATH
to include the JUnit jar.

On Linux and other Unix-like systems, you just include the
path to the JAR file in the CLASSPATH environment variable.
For instance, suppose the JAR file is located in /usr/java/

packages/junit3.8.1/junit.jar. You would need to run
a command similar to the following:

CLASSPATH=$CLASSPATH:/usr/java/packages/junit3.8.1/junit.jar

Each entry in the class path is separated by a colon (“:”).

Typically you would put this command in your shell’s start-
up script (.bashrc or /etc/profile or the like), so that you
always have the modified CLASSPATH.

Under Microsoft WindowsTM operating systems, go down the
following menu path:

Start

Settings

Control Panel

System

Advanced Tab

Environment Variables...

Modify the existing CLASSPATH variable if there is one, or
add a new environment variable named CLASSPATH. Suppose
the JUnit jar is located in C:\java\junit3.8.1\junit.jar.
You’d type that value into the dialog box:

Variable: CLASSPATH
Variable Value: C:\java\junit3.8.1\junit.jar

Prepared exclusively for Francilene Procopio Garcia

DOES IT WORK? 126

If you have existing entries in the class path, be aware that
each additional entry in the class path is separated by a semi-
colon (“;”).

You may have to restart any shell windows or applications to
have this change take effect.

B.2 Does it work?

To tell whether JUnit has been installed properly or not, try
to compile a source file containing the import statement:

import junit.framework.*;

If that succeeds, then your compiler can find JUnit. You’re
ready to go!

Don’t forget that your test code needs to inherit from JUnit’s
TestCase base class. See the explanation on page 26 for more
information.

Prepared exclusively for Francilene Procopio Garcia

Appendix C

JUnit Test Skeleton
Sometimes it can be convenient to add a bit more functional-
ity to the unit tests. In particular, it’s nice to add a main so
that you can simply run the test class directly from the com-
mand line. For example, suppose we have a test case named
com.abc.test.TestAlpha. In this test case we have three
test methods, named testDefault(), testWithReal() and
testWithExtension().

java com.abc.test.TestAlpha
java com.abc.test.TestAlpha testWithReal
java com.abc.test.TestAlpha testWithReal testDefault

The first command will run all three of the test methods in
TestAlpha. The second line will just run the one method
testWithReal() and the last will run both testWithReal()

and testDefault().

Figure C.1 on the following page shows a skeleton template
that provides that functionality: you can run all tests or just
a named test from the command line. It will use the suite

method of a test class if one is defined, otherwise it will use
reflection to discover the test. . . methods. It also includes
stubs for the setUp and tearDown methods:

You’ll notice we put in a default suite() method as well.
This allows you to always assume that every TestCase has a
suite() method you can call, even if it just does the default
dynamic-discovery of test methods. You can change this, of
course, to add selected tests or composite suites and so on.

APPENDIX C. JUNIT TEST SKELETON 128

// package...

import junit.framework.*;

// Change all occurrences of "Skeleton" below
// as appropriate

public class TestSkeleton extends TestCase {
/**
* Per-method test set up
*/
public void setUp() {
}
/**
* Per-method test tear down
*/
public void tearDown() {
}
/**
* Add tests here:
* public void testName() ...
*/

public TestSkeleton(String name) {
super(name);

}
/**
* Default suite method
*/
public static Test suite() {
return new TestSuite(TestSkeleton.class);

}
/** Note -- "main" will only be run when invoked
* individually from the command line
* (not via Ant’s JUnit Task, etc.)
*/

public static void main (String[] args) {
TestSuite suite = new TestSuite();

if (args.length != 0) {
// Run specific tests as indicated from the
// command line
for (int i=0; i< args.length; i++) {

suite.addTest(new TestSkeleton(args[i]));

}
} else {

// Dynamically discover all of them, or use
// user-defined suite
suite.addTest(TestSkeleton.suite());

}
junit.textui.TestRunner.run(suite);

}
}

Figure C.1: TestSkeleton.java—Basic test Skeleton

Prepared exclusively for Francilene Procopio Garcia

HELPER CLASS 129

This code is a good starting point; however, there’s a lot of du-
plicated code in that skeleton that will be propagated through-
out the system. That is, copying this code for each new class
throughout the system will result in duplication. And that
can cause problems.

For example, we had a client that did exactly that. They were
somewhat new to unit testing, and wanted to be able to run
tests from the command line. So they had a boilerplate tem-
plate that provided a suitable main() to run the tests. It
also contained some startup code to establish database and
CORBA connections.

The code was widely copied throughout the system, which was
unfortunate when the CORBA connection logic had to change.
The developer who had written the template in the first place
had to go through all 78 places where it had been copied
to make the necessary change. When the database connec-
tion details changed, he had to go through all 86 places and
change them again (a few more classes had been introduced
by then).

So perhaps we’d better refactor this skeleton before it becomes
widely used, to make the part that gets copied as small and
trivial as possible, with all the real functionality located in one
place (instead of the 112 places it’s up to by now).

C.1 Helper Class

We’ll pull out the execution code into a helper class, shown
in Figure C.2 on the next page. This class contains all the
functionality we need to run specific tests given as arguments,
or all the tests defined by a suite() method, or all the tests
named test. . . if there is no suite() method.

C.2 Basic Template

And now the code template that we need to copy and start off
with is much simpler. We show it in Figure C.3 on page 131.

If you think this would be helpful, start each test class you
write by copying this template as a starting point. If your

Prepared exclusively for Francilene Procopio Garcia

BASIC TEMPLATE 130

import junit.framework.*;
import java.lang.reflect.Method;

public class TestFinder {
/* Note -- "main" will only be run when invoked individually
* from the command line (not via Ant, etc.).
* This code dynamically builds a test suite, based either
* on command-line arguments, or on
* reflection into the specified class.
*/

public static void run(Class which, String[] args) {
TestSuite suite = null;

if (args.length != 0) {
// Run specific tests as indicated from the command line

try {
java.lang.reflect.Constructor ctor;
ctor = which.getConstructor(new Class[]

{String.class});
suite = new TestSuite();

for (int i=0; i< args.length; i++) {
suite.addTest((TestCase)ctor.newInstance(

new Object[]{args[i]}));
}

} catch (Exception e) {
System.err.println("Unable to instantiate " +

which.getName() +
": " + e.getMessage());

System.exit(1);

}
} else {

// Call the suite() method of the given class,
// if there is one
try {

Method suite_method = which.getMethod("suite",
new Class[0]);

suite = (TestSuite) suite_method.invoke(null,
null);

} catch (Exception e) {
// Whoops! No public suite() in that class.
// Make a default list using reflection:
suite = new TestSuite(which);

}
}
junit.textui.TestRunner.run(suite);

}
}

Figure C.2: TestFinder.java—Test Helper Class

Prepared exclusively for Francilene Procopio Garcia

BASIC TEMPLATE 131

import junit.framework.*;

public class TestSample extends TestCase {
public TestSample(String name) { super(name); }
/**
* Per-test setup
*/
public void setUp() {
}
/**
* Per-test teardown
*/
public void tearDown() {
}
/*
* Tests go here...
*/
public void testMe() {
assertTrue(true);

}
/**
* Default suite() method discovers all tests...
*/
public static Test suite() {
return new TestSuite(TestSample.class);

}
public static void main(String[] args) {
TestFinder.run(TestSample.class, args);

}
};

Figure C.3: TestSample.java—Simplified Test Skeleton

environment allows it, you can arrange to have this skele-
ton come up whenever you start a unit test for a new class,
and just change the name “Sample” to the actual name of the
class.

Prepared exclusively for Francilene Procopio Garcia

Appendix D

Resources

D.1 On The Web

Ant
⇒ http://ant.apache.org

Java-based, cross-platform build tool, similar to make.

Cactus
⇒ http://jakarta.apache.org/cactus

Cactus is a simple test framework for unit testing server-side java

code (Servlets, EJBs, Tag Libs, Filters, etc).

CruiseControl
⇒ http://cruisecontrol.sourceforge.net

CruiseControl is a framework for a continuous build process. It in-

cludes plugins for email notification, Ant integration, and various

source control tools. A web interface is provided to view the details

of the current and previous builds.

Easy-Mock
⇒ http://www.easymock.org

Provides an easy way to use Mock Objects in JUnit tests.

JUnit
⇒ http://junit.org

Unit testing framework for Java.

JUnitPerf
⇒ http://www.clarkware.com

JUnitPerf is a collection of JUnit test decorators that help you mea-

sure the performance and scalability of those parts of your system

that have JUnit tests.

ON THE WEB 133

MockObjects
⇒ http://www.mockobjects.com

A core Mock object framework for Java programmers and set of mock

implementations for the standard Java platform APIs.

Nounit
⇒ http://nounit.sourceforge.net

Nounit generates a report from your code to graphically show you

how many of your project’s methods are being tested, and how well.

It can graph other aspects of the code base as well.

Pragmatic Programming
⇒ http://www.pragmaticprogrammer.com

Home page for Pragmatic Programming and your authors. Here you’ll

find all of the source code examples from this book, additional re-

sources, updated URL’s and errata, and news on additional volumes

in this series and other resources.

Quilt
⇒ http://quilt.sourceforge.net

Quilt provides code coverage statistics based on JUnit Unit Tests. It

currently contains Statement and Branch coverage.

Tinderbox
⇒ http://www.mozilla.org/tinderbox.html

Tinderbox allows you to see what is happening in the source tree; it

shows you who checked in what (by asking Bonsai); what platforms

have built successfully; what platforms are broken and exactly how

they are broken (the build logs); and the state of the files that made

up the build (cvsblame) so you can figure out who broke the build

and how to fix it.

Tomcat
⇒ http://jakarta.apache.org/tomcat

Tomcat is the servlet container that is used in the official Reference

Implementation for the Java Servlet and JavaServer Pages technolo-

gies.

xUnit
⇒ http://www.xprogramming.com/software.htm

Unit testing frameworks for many, many different languages and en-

vironments.

Prepared exclusively for Francilene Procopio Garcia

BIBLIOGRAPHY 134

D.2 Bibliography

[Bec00] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, Reading, MA,
2000.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison Wesley
Longman, Reading, MA, 1999.

[HT00] Andrew Hunt and David Thomas. The Pragmatic
Programmer: From Journeyman to Master. Addi-
son-Wesley, Reading, MA, 2000.

[Mey97] Bertrand Meyer. Object-Oriented Software Con-
struction. Prentice Hall, Englewood Cliffs, NJ, sec-
ond edition, 1997.

[MFC01] Tim Mackinnon, Steve Freeman, and Philip Craig.
Endo-testing: Unit testing with mock objects.
In Giancarlo Succi and Michele Marchesi, edi-
tors, Extreme Programming Examined, chapter 17,
pages 287–302. Addison Wesley Longman, Read-
ing, MA, 2001.

[Pro04] Pragmatic Programmers. Pragmatic Automation.
The Pragmatic Programmers, LLC, Raleigh, NC,
and Dallas, TX, (planned for) 2004.

[TH03] Dave Thomas and Andy Hunt. Pragmatic Ver-
sion Control. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2003.

Prepared exclusively for Francilene Procopio Garcia

Pragmatic Unit Testing: Summary

General Principles:

2 Test anything that might break

2 Test everything that does break

2 New code is guilty until proven innocent

2 Write at least as much test code as
production code

2 Run local tests with each compile

2 Run all tests before check-in to repository

Questions to Ask:

2 If the code ran correctly, how
would I know?

2 How am I going to test this?

2 What else can go wrong?

2 Could this same kind of problem
happen anywhere else?

What to Test: Use Your RIGHT-BICEP

2 Are the results right?

2 Are all the boundary conditions CORRECT?

2 Can you check inverse relationships?

2 Can you cross-check results using other
means?

2 Can you force error conditions to happen?

2 Are performance characteristics within
bounds?

Good tests are A TRIP

2 Automatic

2 Thorough

2 Repeatable

2 Independent

2 Professional

CORRECT Boundary Conditions

2 Conformance — Does the value conform to an expected format?

2 Ordering — Is the set of values ordered or unordered as appropriate?

2 Range — Is the value within reasonable minimum and maximum values?

2 Reference — Does the code reference anything external that isn’t under direct
control of the code itself?

2 Existence — Does the value exist? (e.g., is non-null, non-zero, present in a set, etc.)

2 Cardinality — Are there exactly enough values?

2 Time (absolute and relative) — Is everything happening in order? At the right time?
In time?

http://www.pragmaticprogrammer.com/sk/ut

Appendix F

Answers to Exercises

Exercise 1: from page 59
A simple stack class. Push String objects onto the stack, and pop

them off according to normal stack semantics. This class provides
the following methods:

public interface StackExercise {
/**
* Return and remove the most recent item from
* the top of the stack.
* Throws StackEmptyException
* if the stack is empty
*/

public String pop() throws StackEmptyException;

/**
* Add an item to the top of the stack.
*/

public void push(String item);

/**
* Return but do not remove the most recent
* item from the top of the stack.
* Throws StackEmptyException
* if the stack is empty
*/

public String top() throws StackEmptyException;

/**
* Returns true if the stack is empty.
*/

public boolean isEmpty();

} St
a

c
kE

xe
rc

ise
.ja

va

Here are some hints to get you started: what is likely to break? How
should the stack behave when it is first initialized? After it’s been
used for a while? Does it really do what it claims to do?

APPENDIX F. ANSWERS TO EXERCISES 137

Answer 1:

• For a brand-new stack, isEmpty() should be true, top() and
pop() should throw exceptions.

• Starting with an empty stack, call push() to push a test string
onto the stack. Verify that top() returns that string several
times in a row, and that isEmpty() returns false.

• Call pop() to remove the test string, and verify that it is the
same string.1 isEmpty() should now be true. Call pop()
again verify an exception is thrown.

• Now do the same test again, but this time add multiple items to
the stack. Make sure you get the rights ones back, in the right
order (the most recent item added should be the one returned).

• Push a null onto the stack and pop it; confirm you get a null

back.

• Ensure you can use the stack after it has thrown exceptions.

Exercise 2: from page 60
A shopping cart. This class lets you add, delete, and count the items
in a shopping cart.

What sort of boundary conditions might come up? Are there any im-
plicit restrictions on what you can delete? Are there any interesting
issues if the cart is empty?

public interface ShoppingCart {
/**
* Add this many of this item to the
* shopping cart.
*/

public void addItems(Item anItem, int quantity)
throws NegativeCountException;

/**
* Delete this many of this item from the
* shopping cart
*/

public void deleteItems(Item anItem,
int quantity)

throws NegativeCountException,
NoSuchItemException;

/**
* Count of all items in the cart
* (that is, all items x qty each)
*/

public int itemCount();

1In this case, assertEquals() isn’t good enough; you need assert-

Same() to ensure it’s the same object.

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 138

/**
* Return Iterator of all items
* (see Java Collection’s doc)
*/

public Iterator iterator();

}

Answer 2:

• Call addItems with quantity of 0 and itemCount should re-
main the same.

• Call deleteItem with quantity of 0 and itemCount should
remain the same.

• Call addItems with a negative quantity and it should raise an
exception.

• Call deleteItem with a negative quantity and it should raise
an exception.

• Call addItems and the item count should increase, whether
the item exists already or not.

• Call deleteItem where the item doesn’t exist and it should
raise an exception.

• Call deleteItem when there are no items in the cart and
itemCount should remain at 0.

• Call deleteItem where the quantity is larger than the number
of those items in the cart and it should raise an exception.

• Call iterator when there are no items in the cart and it
should return an empty iterator (i.e., it’s a real iterator object
(not null) that contains no items).

• Call addItem several times for a couple of items and verify that
contents of the cart match what was added (as reported via
iterator() and itemCount()).

Hint: you can combine several of these asserts into a single test. For
instance, you might start with an empty cart, add 3 of an item, then
delete one of them at a time.

Exercise 3: from page 61
A fax scheduler. This code will send faxes from a specified file name
to a U.S. phone number. There is a validation requirement; a U.S.
phone number with area code must be of the form xnn-nnn-nnnn,
where x must be a digit in the range [2..9] and n can be [0..9].
The following blocks are reserved and are not currently valid area
codes: x11, x9n, 37n, 96n.

The method’s signature is:

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 139

/**
* Send the named file as a fax to the
* given phone number.
*/

public boolean sendFax(String phone,
String filename)

throws MissingOrBadFileException,
PhoneFormatException,
PhoneAreaCodeException;

Given these requirements, what tests for boundary conditions can
you think of?

Answer 3:

• Phone numbers with an area code of 111, 211, up to 911, 290,
291, etc, 999, 370-379, or 960-969 should throw a Phone-

AreaCodeException.

• A phone number with too many digits (in one of each set of
number, area code, prefix, number) should throw a Phone-

FormatException.

• A phone number with not enough digits (in one of each set)
should throw a PhoneFormatException.

• A phone number with illegal characters (spaces, letters, etc.)
should throw a PhoneFormatException.

• A phone number that’s missing dashes should throw a Phone-

FormatException.

• A phone number with multiple dashes should throw a Phone-

FormatException.

• A null phone number should throw a PhoneFormatExcep-

tion.

• A file that doesn’t exist should throw a MissingOrBadFile-

Exception.

• A null filename should also throw that exception.

• An empty file should throw a MissingOrBadFileException.

• A file that’s not in the correct format should throw a Missing-

OrBadFileException.

Exercise 4: from page 61
An automatic sewing machine that does embroidery. The class
that controls it takes a few basic commands. The coordinates (0,0)
represent the lower-left corner of the machine. x and y increase as
you move toward the upper-right corner, whose coordinates are x =

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 140

getTableSize().width - 1 and y = getTableSize().height -

1.

Coordinates are specified in fractions of centimeters.

public void moveTo(float x, float y);
public void sewTo(float x, float y);
public void setWorkpieceSize(float width,

float height);
public Size getWorkpieceSize();
public Size getTableSize();

There are some real-world constraints that might be interesting: you
can’t sew thin air, of course, and you can’t sew a workpiece bigger
than the machine.

Given these requirements, what boundary conditions can you think
of?

Answer 4:

• Huge value for one or both coordinates

• Huge value for workpiece size

• Zero or negative value for one or both coordinates

• Zero or negative value for workpiece size

• Coordinates that move off the workpiece

• Workpiece bigger than the table

Exercise 5: from page 61
Audio/Video Editing Transport. A class that provides methods to
control a VCR or tape deck. There’s the notion of a “current position”
that lies somewhere between the beginning of tape (BOT) and the end
of tape (EOT).

You can ask for the current position and move from there to another
given position. Fast-forward moves from current position toward
EOT by some amount. Rewind moves from current position toward
BOT by some amount.

When tapes are first loaded, they are positioned at BOT automati-
cally.

public interface AVTransport {
/**
* Move the current position ahead by this many
* seconds. Fast-forwarding past end-of-tape
* leaves the position at end-of-tape
*/

public void fastForward(float seconds);

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 141

/**
* Move the current position backwards by this
* many seconds. Rewinding past zero leaves
* the position at zero
*/

public void rewind(float seconds);

/**
* Return current time position in seconds
*/

public float currentTimePosition();

/**
* Mark the current time position with this label
*/

public void markTimePosition(String name);

/**
* Change the current position to the one
* associated with the marked name
*/

public void gotoMark(String name);

} A
V

Tr
a

ns
p

o
rt

.ja
va

Answer 5:

• Verify that the initial position is BOT.

• Fast forward by some allowed amount (not past end of tape),
then rewind by same amount. Should be at initial location.

• Rewind by some allowed amount amount (not past beginning of
tape), then fast forward by same amount. Should be at initial
location.

• Fast forward past end of tape, then rewind by same amount.
Should be before the initial location by an appropriate amount
to reflect the fact that you can’t advance the location past the
end of tape.

• Try the same thing in the other direction (rewind past begin-
ning of tape).

• Mark various positions and return to them after moving the
current position around.

• Mark a position and return to it without moving in between.

Exercise 6: from page 62
Audio/Video Editing Transport, Release 2.0. As above, but now
you can position in seconds, minutes, or frames (there are exactly
30 frames per second in this example), and you can move relative to
the beginning or the end.

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 142

Answer 6: Cross-check results using different units: move in one
unit and verify your position using another unit; move forward in
one unit and back in another, and so on.

Exercise 7: from page 74
Come up with a simple mock object (by hand) for an MP3 player
control panel with the following methods:

import java.util.ArrayList;

public interface Mp3Player {
/**
* Begin playing the filename at the top of the
* play list, or do nothing if playlist
* is empty.
*/

public void play();

/**
* Pause playing. Play will resume at this spot.
*/

public void pause();

/**
* Stop playing. The current song remains at the
* top of the playlist, but rewinds to the
* beginning of the song.
*/

public void stop();

/** Returns the number of seconds into
* the current song.
*/

public double currentPosition();

/**
* Returns the currently playing file name.
*/

public String currentSong();

/**
* Advance to the next song in the playlist
* and begin playing it.
*/

public void next();

/**
* Go back to the previous song in the playlist
* and begin playing it.
*/

public void prev();

/**
* Returns true if a song is currently
* being played.
*/

public boolean isPlaying();

/**
* Load filenames into the playlist.
*/

public void loadSongs(ArrayList names);

}

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 143

M
p

3P
la

ye
r.j

a
va

It should pass the following unit test:

import junit.framework.*;
import java.util.ArrayList;

public class TestMp3Player extends TestCase {
protected Mp3Player mp3;
protected ArrayList list = new ArrayList();

public void setUp() {
mp3 = new MockMp3Player();

list = new ArrayList();
list.add("Bill Chase -- Open Up Wide");
list.add("Jethro Tull -- Locomotive Breath");
list.add("The Boomtown Rats -- Monday");
list.add("Carl Orff -- O Fortuna");

}
public void testPlay() {
mp3.loadSongs(list);
assertFalse(mp3.isPlaying());
mp3.play();
assertTrue(mp3.isPlaying());
assertTrue(mp3.currentPosition() != 0.0);
mp3.pause();
assertTrue(mp3.currentPosition() != 0.0);
mp3.stop();
assertEquals(mp3.currentPosition(), 0.0, 0.1);

}
public void testPlayNoList() {
// Don’t set the list up
assertFalse(mp3.isPlaying());
mp3.play();
assertFalse(mp3.isPlaying());
assertEquals(mp3.currentPosition(), 0.0, 0.1);
mp3.pause();
assertEquals(mp3.currentPosition(), 0.0, 0.1);
assertFalse(mp3.isPlaying());
mp3.stop();
assertEquals(mp3.currentPosition(), 0.0, 0.1);
assertFalse(mp3.isPlaying());

}
public void testAdvance() {
mp3.loadSongs(list);

mp3.play();

assertTrue(mp3.isPlaying());

mp3.prev();
assertEquals(mp3.currentSong(), list.get(0));
assertTrue(mp3.isPlaying());

mp3.next();
assertEquals(mp3.currentSong(), list.get(1));
mp3.next();
assertEquals(mp3.currentSong(), list.get(2));
mp3.prev();

assertEquals(mp3.currentSong(), list.get(1));

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 144

mp3.next();
assertEquals(mp3.currentSong(), list.get(2));
mp3.next();
assertEquals(mp3.currentSong(), list.get(3));
mp3.next();
assertEquals(mp3.currentSong(), list.get(3));
assertTrue(mp3.isPlaying());

}
} Te

st
M

p
3P

la
ye

r.j
a

va

Answer 7:

Here is a simple mock object that handles the semantics of current
song and position in that song.

import java.util.ArrayList;

public class MockMp3Player implements Mp3Player {
// State of the player
private boolean isPlaying = false;

// Position within the current song
private double currentPos = 0.0;

// List of song names
private ArrayList songList = new ArrayList();

// Index of current song
private int currentIndex;

public void play() {
if (songList.size() > 0) {

isPlaying = true;
// While playing, we’re always 1 second
// into the song. For a more realistic mock,
// you could implement a timer in a thread
// that would advance the position and switch
// to the next song when needed.
currentPos = 1.0;

} else {
isPlaying = false;
currentPos = 0.0;

}
}
public void pause() {
isPlaying = false;

}
public void stop() {
isPlaying = false;
// Rewind to beginning of current song
currentPos = 0.0;

}
public double currentPosition() {
return currentPos;

}
public String currentSong() {
if (songList.size() == 0) {

return null;

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 145

}
return (String)songList.get(currentIndex);

}
public void next() {
if (currentIndex < songList.size()-1) {

currentIndex++;

}
currentPos = 0.0;

}
public void prev() {
if (currentIndex > 0) {

currentIndex--;

}
currentPos = 0.0;

}
public boolean isPlaying() {
return isPlaying;

}
public void loadSongs(ArrayList names) {
songList = names;

}
} M

o
c

kM
p

3P
la

ye
r.j

a
va

Exercise 8: from page 116
Design an interest calculator that calculates the amount of interest
based on the number of working days in-between two dates. Use
test-first design, and take it one step at a time.

Answer 8: Here’s a possible scenario of steps you might take.
There is no right answer; this exercise is simply to get you to think
about test-first design.

1. Begin by simply calculating the days between any two dates
first. The tests might include:

• Use the same value for first date and last date.

• Try the normal case where first date < last date.

• Try the error case where first date > last date.

• Try dates that span a year boundary (from October 1 2003
to March 1, 2004 for instance).

• Try dates more than a year apart (from October 1 2003 to
December 1, 2006).

2. Next, exclude weekends from the calculation, using the same
sorts of tests.

3. Now exclude public and/or corporate holidays. This raises a
potentially interesting question: how do you specify holidays?

Prepared exclusively for Francilene Procopio Garcia

APPENDIX F. ANSWERS TO EXERCISES 146

You had to face that issue when writing the tests; do you think
doing so improved your interface?

4. Finally, perform the interest calculation itself. You might start
off with tests such as:

• Interest amount should never be negative (an invariant).

• Interest when first date equals last date should be 0.0.

Prepared exclusively for Francilene Procopio Garcia

Index

Symbols
0–1–n rule, 55

A
A-TRIP, 77
A/V transport exercise, see

Exercises, A/V transport
Accessors, 83
Actual, 23
addCropMarks(), 115
Agile, 38
Amount of test code, 83
Anonymous array, 16
Ant, 123, 132
AntHill, 78
Arianne 5 rocket, 6
Arrays

and equality, 23
Assert

custom, 51
definition, 23

assertEquals(), 13, 23
assertFalse(), 25
assertNotSame(), 24
assertNull(), 24
assertSame(), 24
assertTrue(), 13, 24, 34, 119
Assumptions, 53
Automatic, 78
Automation, ix, 78

B
Bad magic, 77
Bearing.java, 50
Big ball of mud, 94
Blank, 54
Boolean conditions, 13, 24

Boundary conditions, 41, 46
Breaking the build/tests, 91
Broccoli, 1
Bugs

clumping, 79, 80
elusive, 122
fixing, 84
identifying likely, 37
in sort routines, 49
isolating, 10, 25
list position, 18, 48
memory, 120
phantom, 81
rewriting due to, 10
traceable to unit tests, 82

Build machine, 78
Business logic, 57, 112

C
Cactus, 74, 132
Cardinality, 55
Career limiting move, 10
Checker.java, 66
checkInvariant(), 52
Class Invariant, see Invariant
CLASSPATH, 89, 125
Clean room, 117
Code examples

finding the source to, xi
Collateral damage, 113

definition, 8
Concurrency, 57, 59, 122
Confidence, 3
Conformance, 47
Constructor, 26
Continuous build/integration,

78, 93, 95, 132, 133

COPY AND PASTE 148 JUNIT

Copy and paste, 32, 83, 129
CORRECT, 46
Costs, 10
Coupling, 63, 122
Cross-checking, 42
CruiseControl, 78, 95, 132
CVS, 91

D
Data structures, 51
Daylight savings time, 58
Debugging, 2, 9
Dependencies, 53, 122
Developer sandbox, 81, 86
Donne, John, 82
DRY principle, 82, 117

definition, 32n

E
E-mail address format, 47
Easy-Mock, 72, 132
Elephant

how to eat, 96
Encapsulation, 50, 64, 87
Engineering, 5
Environment, see Test code,

environment
Environmental.java, 66
Environmental constraints, 44
Equality, 13

deceptive, 121
native arrays, 23

Error conditions, 43
Examples, see Code examples
Exception, 20, 23, 25, 33, 34, 54,

97
Excuses, 7
Exercises

A/V transport, 61, 140
fax machine, 61, 138
interest calculator, 116
MP3 player, 74, 142
sewing machine, 61, 139
shopping cart, 60, 137
stack, 59, 136

Existence, 54
Expected, 23
External dependencies, 53, 122
Extreme Programming, 86, 96

F
Factory class, 116
fail(), 25
Failing tests, see Test code,

broken
Fax machine exercise, see

Exercises, fax machine
Feedback, x, 84, 93, 115
Fencepost errors, 55
Finally, 109
Floating-point numbers, 23, 120
Formal testing, 4

G
getTime(), 64–69
GMT, 58
Good neighbor, 109

H
House of cards, 4

I
IDE, 11, 17, 78, 88, 124
Import, 26
Improving tests, 84
Independent, 29, 81
Indexing concepts, 53
Input data validation, 117
Interest calculator exercise, see

Exercises, interest
calculator

Invariant, 51, 52, 112
on an index, 113

Inverse relationships, 42

J
Java

library versions, 122
Java Exception, see Exception
Java packages, 89
JUnit, 132

command-line installation,
125

composing tests, 27
custom asserts, 32
directory structure, see Test

code, locating
downloading, 124
and exceptions, 33
import statement, 126
minimum framework, 26, 35

JUNITPERF 149 SERVLETS

naming conventions, 21, see
Naming conventions

order of tests, 82
running, 17

JUnitPerf, 45, 132

L
Largest.java, 15
largest(), 14–20
Legacy code, 93, 94
Lighting doubles, 63
Linux, 125
Long-running tests, 121

M
main(), 123
Message, 23
Microsoft Windows, 125
Mock objects, 12, 78, 122, 132,

133
definition, 65
steps to using, 65

MockHttpServletRequest, 71
MockMp3Player.java, 144
MockSystemEnvironment.java,

66
MockSystemEnvironment, 67
MP3 player exercise, see

Exercises, MP3 player
Mp3Player.java, 74, 142
MyStack.java, 51–53

N
Naming conventions, 21, 26, 35
Nounit, 79, 133
Null, 24, 54
Numeric overflow, 6n

O
Object identity, 24
Off-by-one errors, 18, 55
Ordering, 48

P
Pair programming, 96
Pay-as-you go model, 9
Performance, 44, 132
Phantom bugs, 81
Postconditions

definition, 54

Pragmatic Automation, ix
Pragmatic Programmers

email address, xii
website, xn

Pragmatic Programming, 133
Pragmatic Project Automation, 78
Pragmatic Starter Kit, viii
Pragmatic Version Control, viii,

91
Preconditions

definition, 54
Private access, 87
Production code, 5, 82, 89

definition, 21
Production system, 12
Professional, 82, 96
Project-specific base class, 32
ProjectTest.java, 32
Properties file, 102
Protected access, 87
Prototype, 11
Public access, 87

Q
Quilt, 79, 133

R
Range, 50
Recipe.java, 106
RecipeFile.java, 107
Recipes.java, 102–106
Refactoring, 101, 122, 129
Reference, 53
Regression, 44
Repeatable, 81
Requirements, 6, 19, 38, 57, 121
Restaurant order, 48
Results

analyzing, 7, 78, 120
Retrospectives, 96
Return on investment, 94
Reviews, 96
Right, 38
RIGHT -BICEP, 37

S
Sandbox, 81, 86
Scientific applications, 24
sendFax(), 61, 138
Separation of concerns, 99
Servlets, 69

SETTIME() 150 TESTSKELETON.JAVA

setTime(), 66
setUp(), 29, 73, 123, 127
Setup code

execution order, 30
Sewing machine exercise, see

Exercises, sewing
machine

Shopping cart exercise, see
Exercises, shopping cart

“Shy” code, 99
Side-effects, 54
Single testing phase, 9
Skeleton template, 127
Sleep, 100
sleepUntilNextHour(), 99
Smoke test, 119
Software engineering, 5
Sort routines, 49
Stack exercise, see Exercises,

stack machine
Stand-ins, 63
StandardPaperFactory, 116
String constants, 110
Stubs, 64
suite(), 27, 127
Synchronized, 59
Syntax vs. semantics, 11
SystemEnvironment.java, 66

T
Team communication, 97
Team environment, 91
tearDown(), 29, 123, 127
Teardown code

execution order, 30
Test code

and accessors, 83
broken, 25, 119, 121
cleanup, 109
compiling, 22
composing, 27
correlate to bugs, 82
coverage analysis, 133
and data files, 38
environment, 120
first test, 15
invoking, 78
linear, 82
locating, 87
long running, 121
ordering, 82

vs. production code, 22, 83
required actions, 22
results, 7
reviewing, 97
run from command line, 127
testing, 84

Test coverage analysis tools, 79,
80

Test data, 40
Test setup

per-suite, 31
per-test, 29

Test suites
definition, 27

Test-driven design, 96, 115
testAdd(), 85
TestCase, 26, 29

subclassing, 32
TestClassComposite.java, 29
TestClassOne.java, 27
TestClassTwo.java, 28
TestClassTwo, 31
TestFinder.java, 130
Testing

acceptance, 3, 12
and design, architecture,

20, 99
courtesy, 91
environment, 120
excuses, 7
formal, 4
frequency, 92
functional, 12
GUI, 111
metrics, 80
performance, 3, 12
regression, 44, 94
responsibility, 118

testJamItIntoPark(), 53
TestJukebox.java, 73
testKitchenOrder(), 49
TestLargest.java, 16–20
TestLargestDataFile, 39
TestMp3Player.java, 75, 143
TestMyStack(), 52
TestRecipe.java, 108
TestRunner, 17, 36
TestSample.java, 131
TestSetup(), 31
TestSimple.java, 26–27
TestSkeleton.java, 128

TESTTEMPSERVLET.JAVA 151 ZERO

TestTempServlet.java, 71
testURLFilter(), 45
Thorough, 79
Time, 8, 10, 57, 121
Timeouts, 58
Tinderbox, 78, 133
Tolerance, 120
Tomcat, 69, 133
Traveling salesman algorithm, 28

U
Unit testing

definition, 3
intentional sabotage, 85
potential dangers, 77

UTC, 58

V
Validation, 38

and verification, 3, 12
formatted data, 47
input data, 117
user input, 117

Version control, viii, 91

W
Wall-clock time, 58
Whac-a-Mole, 8

X
XML, 38
xUnit, 133

Z
Zero, 54

	About the Starter Kit
	Preface
	Introduction
	Coding With Confidence
	What is Unit Testing?
	Why Should I Bother with Unit Testing?
	What Do I Want to Accomplish?
	How Do I Do Unit Testing?
	Excuses For Not Testing
	Roadmap

	Your First Unit Tests
	Planning Tests
	Testing a Simple Method
	More Tests

	Writing Tests in JUnit
	Structuring Unit Tests
	JUnit Asserts
	JUnit Framework
	JUnit Test Composition
	JUnit Custom Asserts
	JUnit and Exceptions
	More on Naming
	JUnit Test Skeleton

	What to Test: The Right-BICEP
	Are the Results Right?
	Boundary Conditions
	Check Inverse Relationships
	Cross-check Using Other Means
	Force Error Conditions
	Performance Characteristics

	CORRECT Boundary Conditions
	Conformance
	Ordering
	Range
	Reference
	Existence
	Cardinality
	Time
	Try It Yourself

	Using Mock Objects
	Simple Stubs
	Mock Objects
	Testing a Servlet
	Easy Mock Objects

	Properties of Good Tests
	Automatic
	Thorough
	Repeatable
	Independent
	Professional
	Testing the Tests

	Testing on a Project
	Where to Put Test Code
	Test Courtesy
	Test Frequency
	Tests and Legacy Code
	Tests and Reviews

	Design Issues
	Designing for Testability
	Refactoring for Testing
	Testing the Class Invariant
	Test-Driven Design
	Testing Invalid Parameters

	Gotchas
	As Long As The Code Works
	``Smoke'' Tests
	``Works On My Machine''
	Floating-Point Problems
	Tests Take Too Long
	Tests Keep Breaking
	Tests Fail on Some Machines
	My main is Not Being Run

	Installing JUnit
	Command-line installation
	Does it work?

	JUnit Test Skeleton
	Helper Class
	Basic Template

	Resources
	On The Web
	Bibliography

	Summary: Pragmatic Unit Testing
	Answers to Exercises

